Skip to main content

Advertisement

Log in

Uric Acid, Hypertension, and Cardiovascular and Renal Complications

  • Hot Topic
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Over the last decade, the biologic interference of uric acid with the cardiovascular (CV) system and the kidney has been intensively investigated, and several experimental studies in animal models and in vitro documented that hyperuricemia may trigger hypertension and incite endothelial dysfunction, vascular damage and renal disease. A substantial proportion of epidemiological studies are compatible with the hypothesis that hyperuricemia may be noxious to the CV system and the kidney as well. However, there are still no well-powered trials testing whether uric acid–lowering interventions may reduce BP or attenuate the risk for adverse CV and renal outcomes. Evidence still remains largely insufficient to recommend changes in the current policy of not prescribing uric acid–lowering drugs to individuals with asymptomatic hyperuricemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, recently published, have been highlighted as: •Of importance ••Of major importance

  1. Feig DI. Hyperuricemia and hypertension. Adv Chronic Kidney Dis. 2012;19:377–85. A comprehensive review of the link between hyperuricemia and hypertension.

    Article  PubMed  Google Scholar 

  2. Culleton BF, Larson MG, Kannel WB, Levy D. Serum uric acid and risk for CV disease and death: the Framingham Heart Study. Ann Intern Med. 1999;131:7–13.

    Article  PubMed  CAS  Google Scholar 

  3. Moritz AR, Oldt MR. Arteriolar sclerosis in hypertensive and non-hypertensive individuals. Am J Pathol. 1937;13:679–728.

    PubMed  CAS  Google Scholar 

  4. Walker MB, Boyd GW. The distribution of arteriolosclerosis along the arterioles in DOCA hypertensive rats. Clin Exp Pharmacol Physiol. 1983;10:319–23.

    Article  PubMed  CAS  Google Scholar 

  5. Sumpio BE, Widmann MD, Ricotta J, et al. Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J Cell Physiol. 1994;158:133–9.

    Article  PubMed  CAS  Google Scholar 

  6. Hishikawa K, Nakaki T, Marumo T, et al. Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. J Clin Invest. 1994;93:1975–80.

    Article  PubMed  CAS  Google Scholar 

  7. Lombardi D, Gordon KL, Polinsky P, et al. Salt-sensitive hypertension develops after short-term exposure to Angiotensin II. Hypertension. 1999;33:1013–9.

    Article  PubMed  CAS  Google Scholar 

  8. Quiroz Y, Pons H, Gordon KL, et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am J Physiol Ren Physiol. 2001;281:F38–47.

    CAS  Google Scholar 

  9. Sanchez-Lozada LG, Tapia E, Jimenez A, et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Ren Physiol. 2007;292:F423–9.

    Article  CAS  Google Scholar 

  10. Aida Y, Shibata Y, Osaka D, et al. The relationship between serum uric acid and spirometric values in participants in a health check: the Takahata study. Int J Med Sci. 2011;8:470–8.

    Article  PubMed  CAS  Google Scholar 

  11. Nieto FJ, Iribarren C, Gross MD, et al. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131–9.

    Article  PubMed  CAS  Google Scholar 

  12. Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008;26:269–75.

    Article  PubMed  CAS  Google Scholar 

  13. Kanellis J, Watanabe S, Li JH, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41:1287–93.

    Article  PubMed  CAS  Google Scholar 

  14. Kang DH, Park SK, Lee IK, Johnson RJ. Uric acid-induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. J Am Soc Nephrol. 2005;16:3553–62.

    Article  PubMed  CAS  Google Scholar 

  15. Rao GN, Corson MA, Berk BC. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J Biol Chem. 1991;266:8604–8.

    PubMed  CAS  Google Scholar 

  16. Kang DH, Joly AH, Oh SW, et al. Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol. 2001;12:1434–47.

    PubMed  CAS  Google Scholar 

  17. Sanchez-Lozada LG, Tapia E, Santamaria J, et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 2005;67:237–47.

    Article  PubMed  Google Scholar 

  18. Johnson RJ, Herrera-Acosta J, Schreiner GF, Rodriguez-Iturbe B. Subtle acquired renal injury as a mechanism of salt-sensitive hypertension. N Engl J Med. 2002;346:913–23.

    Article  PubMed  CAS  Google Scholar 

  19. Hsu CH, Patel SR, Young EW, Vanholder R. Effects of purine derivatives on calcitriol metabolism in rats. Am J Physiol. 1991;260:F596–601.

    PubMed  CAS  Google Scholar 

  20. Sigmund CD. Regulation of renin expression and blood pressure by vitamin D(3). J Clin Invest. 2002;110:155–6.

    PubMed  CAS  Google Scholar 

  21. Vanholder R, Patel S, Hsu CH. Effect of uric acid on plasma levels of 1,25(OH)2D in renal failure. J Am Soc Nephrol. 1993;4:1035–8.

    PubMed  CAS  Google Scholar 

  22. Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Ren Physiol. 2002;282:F991–7.

    CAS  Google Scholar 

  23. Mori T, Cowley Jr AW. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension. 2004;43:752–9.

    Article  PubMed  CAS  Google Scholar 

  24. Khosla UM, Zharikov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005;67:1739–42.

    Article  PubMed  Google Scholar 

  25. Waring WS, Adwani SH, Breukels O, et al. Hyperuricaemia does not impair CV function in healthy adults. Heart. 2004;90:155–9.

    Article  PubMed  CAS  Google Scholar 

  26. Zoccali C, Maio R, Mallamaci F, et al. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006;17:1466–71.

    Article  PubMed  CAS  Google Scholar 

  27. Perticone F, Maio R, Tripepi G, Zoccali C. Endothelial dysfunction and mild renal insufficiency in essential hypertension. Circulation. 2004;110:821–5.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson RJ, Rodriguez-Iturbe B, Kang DH, et al. A unifying pathway for essential hypertension. Am J Hypertens. 2005;18:431–40.

    Article  PubMed  Google Scholar 

  29. Kahn HA, Medalie JH, Neufeld HN, et al. The incidence of hypertension and associated factors: the Israel ischemic heart disease study. Am Heart J. 1972;84:171–82.

    Article  PubMed  CAS  Google Scholar 

  30. Dyer AR, Liu K, Walsh M, et al. Ten-year incidence of elevated blood pressure and its predictors: the CARDIA study. Coronary artery risk development in (Young) adults. J Hum Hypertens. 1999;13:13–21.

    Article  PubMed  CAS  Google Scholar 

  31. Taniguchi Y, Hayashi T, Tsumura K, et al. Serum uric acid and the risk for hypertension and Type 2 diabetes in Japanese men: the Osaka health survey. J Hypertens. 2001;19:1209–15.

    Article  PubMed  CAS  Google Scholar 

  32. Imazu M, Yamamoto H, Toyofuku M, et al. Hyperinsulinemia for the development of hypertension: data from the Hawaii-Los Angeles-Hiroshima study. Hypertens Res. 2001;24:531–6.

    Article  PubMed  CAS  Google Scholar 

  33. Masuo K, Kawaguchi H, Mikami H, et al. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42:474–80.

    Article  PubMed  CAS  Google Scholar 

  34. Nakanishi N, Okamoto M, Yoshida H, et al. Serum uric acid and risk for development of hypertension and impaired fasting glucose or Type II diabetes in Japanese male office workers. Eur J Epidemiol. 2003;18:523–30.

    Article  PubMed  CAS  Google Scholar 

  35. Nagahama K, Inoue T, Iseki K, et al. Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan. Hypertens Res. 2004;27:835–41.

    Article  PubMed  Google Scholar 

  36. Rovda I, Kazakova LM, Plaksina EA. Parameters of uric acid metabolism in healthy children and in patients with arterial hypertension. Pediatriia. 1990;8:19–22.

    Google Scholar 

  37. Torok E, Gyarfas I, Csukas M. Factors associated with stable high blood pressure in adolescents. J Hypertens Suppl. 1985;3:S389–90.

    PubMed  CAS  Google Scholar 

  38. Goldstein HS, Manowitz P. Relation between serum uric acid and blood pressure in adolescents. Ann Hum Biol. 1993;20:423–31.

    Article  PubMed  CAS  Google Scholar 

  39. Nefzger MD, Acheson RM, Heyman A. Mortality from stroke among U.S. veterans in Georgia and 5 western states. I. Study plan and death rates. J Chronic Dis. 1973;26:393–404.

    Article  PubMed  CAS  Google Scholar 

  40. Saito I, Folsom AR, Brancati FL, et al. Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Intern Med. 2000;133:81–91.

    Article  PubMed  CAS  Google Scholar 

  41. Staessen J. The determinants and prognostic significance of serum uric acid in elderly patients of the European Working Party on High Blood Pressure in the Elderly trial. Am J Med. 1991;90:50S–4S.

    Article  PubMed  CAS  Google Scholar 

  42. Moriarity JT, Folsom AR, Iribarren C, et al. Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) study. Ann Epidemiol. 2000;10:136–43.

    Article  PubMed  CAS  Google Scholar 

  43. Alper Jr AB, Chen W, Yau L, et al. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension. 2005;45:34–8.

    Article  PubMed  CAS  Google Scholar 

  44. Sundstrom J, Sullivan L, D'Agostino RB, et al. Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence. Hypertension. 2005;45:28–33.

    Article  PubMed  Google Scholar 

  45. Feig DI, Kang DH, Johnson RJ. Uric acid and CV risk. N Engl J Med. 2008;359:1811–21.

    Article  PubMed  CAS  Google Scholar 

  46. Schretlen DJ, Inscore AB, Vannorsdall TD, et al. Serum uric acid and brain ischemia in normal elderly adults. Neurology. 2007;69:1418–23.

    Google Scholar 

  47. Niskanen LK, Laaksonen DE, Nyyssonen K, et al. Uric acid level as a risk factor for CV and all-cause mortality in middle-aged men: a prospective cohort study. Arch Intern Med. 2004;164:1546–51.

    Article  PubMed  CAS  Google Scholar 

  48. Wannamethee SG, Shaper AG, Whincup PH. Serum urate and the risk of major coronary heart disease events. Heart. 1997;78:147–53.

    PubMed  CAS  Google Scholar 

  49. Wheeler JG, Juzwishin KD, Eiriksdottir G, et al. Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-analysis. PLoS Med. 2005 Mar;2(3):e76.

  50. Bos MJ, Koudstaal PJ, Hofman A, et al. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006;37:1503–7.

    Article  PubMed  CAS  Google Scholar 

  51. Baker JF, Krishnan E, Chen L, Schumacher HR. Serum uric acid and CV disease: recent developments, and where do they leave us? Am J Med. 2005;118:816–26.

    Article  PubMed  CAS  Google Scholar 

  52. Iseki K, Oshiro S, Tozawa M, et al. Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res. 2001;24:691–7.

    Article  PubMed  CAS  Google Scholar 

  53. Jalal DI, Rivard CJ, Johnson RJ, et al. Serum uric acid levels predict the development of albuminuria over 6 years in patients with type 1 diabetes: findings from the Coronary Artery Calcification in Type 1 Diabetes study. Nephrol Dial Transplant. 2010;25:1865–9.

    Article  PubMed  CAS  Google Scholar 

  54. Ficociello LH, Rosolowsky ET, Niewczas MA, et al. High-normal serum uric acid increases risk of early progressive renal function loss in type 1 diabetes: results of a 6-year follow-up. Diabetes Care. 2010;33:1337–43.

    Article  PubMed  CAS  Google Scholar 

  55. Weiner DE, Tighiouart H, Elsayed EF, et al. Uric acid and incident kidney disease in the community. J Am Soc Nephrol. 2008;19:1204–11.

    Article  PubMed  CAS  Google Scholar 

  56. Obermayr RP, Temml C, Knechtelsdorfer M, et al. Predictors of new-onset decline in kidney function in a general middle-european population. Nephrol Dial Transplant. 2008;23:1265–73.

    Article  PubMed  Google Scholar 

  57. Bellomo G, Venanzi S, Verdura C, et al. Association of uric acid with change in kidney function in healthy normotensive individuals. Am J Kidney Dis. 2010;56:264–72.

    Article  PubMed  CAS  Google Scholar 

  58. Madero M, Sarnak MJ, Wang X, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53:796–803.

    Article  PubMed  CAS  Google Scholar 

  59. Sturm G, Kollerits B, Neyer U, et al. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol. 2008;43:347–52.

    Article  PubMed  CAS  Google Scholar 

  60. Syrjanen J, Mustonen J, Pasternack A. Hypertriglyceridaemia and hyperuricaemia are risk factors for progression of IgA nephropathy. Nephrol Dial Transplant. 2000;15:34–42.

    Article  PubMed  CAS  Google Scholar 

  61. • Le W, Liang S, Hu Y, et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant. 2012;27:1479–85. A large observational study linking uric acid levels and progression to end stage renal diseae in IgA nephropathy.

    Article  PubMed  CAS  Google Scholar 

  62. • Helal I, McFann K, Reed B, et al. Serum uric acid, kidney volume and progression in autosomal-dominant polycystic kidney disease. Nephrol Dial Transplant. 2013;28:380–5. A study suggesting that high serum uric acid may be involved in renal function loss in ADPPKD.

    Article  PubMed  CAS  Google Scholar 

  63. Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009 Jun;5(6):e1000504.

  64. Testa A, Leonardis D, Catalano F, et al. The SLC2A9 polymorphism, the major genetic determinant of serum uric acid levels, predicts progression to kidney failure in CKD patients. (Abstract SAP014). Presented at the 49th ERA-EDTA Congress, Paris, France; May 24-27, 2012.

  65. Feig DI, Nakagawa T, Karumanchi SA, et al. Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int. 2004;66:281–7.

    Article  PubMed  CAS  Google Scholar 

  66. Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA. 2008;300:924–32.

    Article  PubMed  CAS  Google Scholar 

  67. Kanbay M, Ozkara A, Selcoki Y, et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol. 2007;39:1227–33.

    Article  PubMed  CAS  Google Scholar 

  68. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    Article  PubMed  CAS  Google Scholar 

  69. Goicoechea M, de Vinuesa SG, Verdalles U, et al. Effect of allopurinol in chronic kidney disease progression and CV risk. Clin J Am Soc Nephrol. 2010;5:1388–93.

    Article  PubMed  CAS  Google Scholar 

  70. Dahlof B, Devereux RB, Kjeldsen SE, et al. CV morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  PubMed  CAS  Google Scholar 

  71. Kao MP, Ang DS, Gandy SJ, et al. Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2011;22:1382–9.

    Article  PubMed  CAS  Google Scholar 

  72. •• Rekhraj S, Gandy SJ, Szwejkowski BR, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–32. A randomized double-blinded, placebo controlled trial (RCT) showing that allopurinol at the dose of 800 mg/d reduces left ventricular hypertrophy and arterial stiffness in patients with coronary heart disease. This trial fully confirms findings in a previous RCT in CKD patients (Ref.71).

    Article  PubMed  CAS  Google Scholar 

  73. Okin PM, Devereux RB, Jern S, et al. Relation of echocardiographic left ventricular mass and hypertrophy to persistent electrocardiographic left ventricular hypertrophy in hypertensive patients: the LIFE Study. Am J Hypertens. 2001;14:775–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Carmine Zoccali and Francesca Mallamaci declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Zoccali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoccali, C., Mallamaci, F. Uric Acid, Hypertension, and Cardiovascular and Renal Complications. Curr Hypertens Rep 15, 531–537 (2013). https://doi.org/10.1007/s11906-013-0391-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0391-y

Keywords

Navigation