Skip to main content

Advertisement

Log in

Aldosterone Synthase Inhibition in Hypertension

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is an established risk factor for stroke, premature coronary artery disease and heart failure. Control of elevated blood pressure has been shown to result in significant reduction of cardiovascular risk. Aldosterone, the final product of the renin–angiotensin–aldosterone system (RAAS), not only causes salt and water reabsorbtion in the kidneys through its effect on the mineralocorticoid hormone receptor (MR), but also an MR-independent effect, not regulated by conventional MR blockade. Although many pharmacological agents target different levels of the RAAS cascade, these generally result in elevated renin concentration and plasma renin activity. This upstream feedback response subsequently results in elevated levels of angiotensin II, a potent vasoconstrictor and stimulus to aldosterone release. This aldosterone breakthrough counteracts the long-term blood pressure–lowering effect of these agents. Therefore the development of a new class of pharmacologic agents that directly inhibit the production of aldosterone may prove clinically useful in reducing aldosterone and thereby controlling elevated blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Prospective studies collaboration. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  2. Vasan RS, Larson MG, Leip EP, et al. Impact of high-normal blood pressure on the risk of cardiovascular disease. N Engl J Med. 2001;245:1291–7.

    Article  Google Scholar 

  3. Marney AM, Brown NJ. Aldosterone and end-organ damage. Clin Sci. 2007;113:267–78.

    Article  PubMed  CAS  Google Scholar 

  4. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3:486–92.

    Article  PubMed  CAS  Google Scholar 

  5. Sato A, Saruta T. Aldosterone escape during angiotensin-converting enzyme inhibitor therapy in essential hypertensive patients with left ventricular hypertrophy. J Int Med Res. 2001;29:13–21.

    Article  PubMed  CAS  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206–52.

    Article  PubMed  CAS  Google Scholar 

  7. Makani H, Bangalore S, Desouza KA, et al. Efficacy and safety of dual blockade of the renin-angiotensin system: meta-analysis of randomized trials. BMJ. 2013;346:f360.

    Article  PubMed  Google Scholar 

  8. Vasan RS, Evans JC, Larson MG, et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N Engl J Med. 2004;351:33–41.

    Article  PubMed  CAS  Google Scholar 

  9. Meneton P, Galan P, Bertrais S, Heudes D, et al. High plasma aldosterone and low renin predict blood pressure increase and hypertension in middle-aged Caucasian populations. J Hum Hypertens. 2008;22:550–8.

    Article  PubMed  CAS  Google Scholar 

  10. El-Gharbawy AH, Nadig VS, Kotchen JM, et al. Arterial pressure, left ventricular mass, and aldosterone in essential hypertension. Hypertension. 2001;37:845–50.

    Article  PubMed  CAS  Google Scholar 

  11. Grim CE, Cowley Jr AW, Hamet P, et al. Hyperaldosteronism and hypertension: ethnic differences. Hypertension. 2005;45:766–72.

    Article  PubMed  CAS  Google Scholar 

  12. Reynolds RM, Walker BR, Phillips DI, et al. Programming of hypertension: associations of plasma aldosterone in adult men and women with birth weight, cortisol, and blood pressure. Hypertension. 2009;53:932–6.

    Article  PubMed  CAS  Google Scholar 

  13. Nishizaka MK, Zaman MA, Green SA, et al. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation. 2004;109:2857–61.

    Article  PubMed  CAS  Google Scholar 

  14. Blacher J, Amah G, Girerd X, et al. Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with arterial hypertension. Am J Hypertens. 1997;10:1326–34.

    Article  PubMed  CAS  Google Scholar 

  15. Mulé G, Nardi E, Cusimano P, et al. Plasma aldosterone and its relationships with left ventricular mass in essential hypertensive patients with metabolic syndrome. Am J Hypertens. 2008;21:1055–61.

    Article  PubMed  Google Scholar 

  16. Brill CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med. 1992;120:893–901.

    Google Scholar 

  17. Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47:312–8.

    Article  PubMed  CAS  Google Scholar 

  18. Hollenberg NK. Aldosterone in the development and progression of renal injury. Kidney Int. 2004;66:1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Bentley-Lewis R, Adler GK, Perlstein T, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92:4472–5.

    Article  PubMed  CAS  Google Scholar 

  20. Garg R, Hurwitz S, Williams GH, et al. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95:1986–90.

    Article  PubMed  CAS  Google Scholar 

  21. Gaddam K, Corros C, Pimenta E, et al. Rapid reversal of left ventricular hypertrophy and intracardiac volume overload in patients with resistant hypertension and hyperaldosteronism: a proscpecive clinical study. Hypertension. 2010;55:1137–42.

    Article  PubMed  CAS  Google Scholar 

  22. Epstein M, Williams GH, Weinberger M, et al. Selective aldosterone clockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1:940–51.

    Article  PubMed  CAS  Google Scholar 

  23. Pitt B, Zannad F, Remme WJ, et al. Randomized aldactone evaluation study investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  24. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  25. Zannad F, McMurray JJ, Krum H, et al. For the EMPHASIS-HF group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article  PubMed  CAS  Google Scholar 

  26. Zannad F. Aldosterone antagonist therapy in resistant hypertension. J Hypertens. 2007;25:747–50.

    Article  PubMed  CAS  Google Scholar 

  27. Lane DA, Shah S, Beevers DG. Low-dose spironolactone in management of resistant hypertension: a surveillance study. J Hypertens. 2007;25:891–4.

    Article  PubMed  CAS  Google Scholar 

  28. Jansen PM, Danser AH, Imholz BP, van den Meiracker AH. Aldosterone-receptor antagonism in hypertension. J Hypertens. 2009;27:680–91.

    Article  PubMed  CAS  Google Scholar 

  29. Hollenberg NK. Aldosterone synthase inhibition: a promising beginning. Curr Hypertens Rep. 2011;13:99–102.

    Article  Google Scholar 

  30. Funder JW, Mihailidou AS. Aldosterone and mineralocorticoid receptors: clinical studies and basic biology. Mol Cell Endocrinol. 2009;301:2–6.

    Article  PubMed  CAS  Google Scholar 

  31. Brown R, Quirk J, Kirkpatrick P. Eplerenone. Nat Rev Drug Discov. 2003;2:177–8.

    Article  PubMed  CAS  Google Scholar 

  32. Hartmann RW, Müller U, Ehmer PB. Discovery of selective CYP11B2 (aldosterone synthase) inhibitors for the therapy of congestive heart failure and myocardial fibrosis. Eur J Med Chem. 2003;38:363–6.

    Article  PubMed  CAS  Google Scholar 

  33. Jansen PM, van den Meiracker AH, Jan Danser AH. Aldosterone synthase inhibitors: pharmacological and clinical aspects. Curr Opin Investig Drugs. 2009;10:319–26.

    PubMed  CAS  Google Scholar 

  34. Paulis L, Unger T. Novel therapeutic targets for hypertension. Nat Rev Cardiol. 2009;7:431–41.

    Article  Google Scholar 

  35. Trunet PF, Mueller P, Girard F, et al. The effects of fadrozole hydrochloride on aldosterone secretion in healthy male subjects. J Clin Endocrinol Metab. 1992;74:571–6.

    Article  PubMed  CAS  Google Scholar 

  36. Adams CM, Hu C-W, Jeng AY, et al. The discovery of potent inhibitors of aldosterone synthase that exhibit selectivity over 11-β-hydroxylase. Bioorg Med Chem Lett. 2010;20:4324–7.

    Article  PubMed  CAS  Google Scholar 

  37. • Strushkevich N, Gilep AA, Shen L, et al. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol. 2013;27:315–24. This paper provides insight into the molecular and structural mechanisms of ASI and sheds light on the cause of limited target selectivity of these agents.

    Article  PubMed  CAS  Google Scholar 

  38. Fiebeler A, Nussberger J, Shagdarsuren E, et al. Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 2005;111:3087–94.

    Article  PubMed  CAS  Google Scholar 

  39. Minnaard-Huiban M, Emmen JM, Roumen L, et al. Fadrozole reverses cardiac fibrosis in spontaneously hypertensive heart failure rats: discordant enantioselectivity versus reduction of plasma aldosterone. Endocrinology. 2008;149:28–31.

    Article  PubMed  CAS  Google Scholar 

  40. Lea WB, Kwak ES, Luther JM, et al. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 2009;75:936–44.

    Article  PubMed  CAS  Google Scholar 

  41. Mulder P, Mellin V, Favre J, et al. Aldosterone synthase inhibition improves cardiovascular function and structure in rats with heart failure: a comparison with spironolactone. Eur Heart J. 2008;29:2171–9.

    Article  PubMed  CAS  Google Scholar 

  42. Menard J, Watson C, Rebello S, et al. Hormonal and electrolyte responses to the aldosterone synthase inhibitor lci699 in sodium depleted healthy subjects. J Am Coll Cardiol. 2010;55:A61–E583.

    Article  Google Scholar 

  43. •• Amar L, Azizi M, Joël M, et al. Aldosterone synthase inhibition with LCI699. A proof-of-concept study in patients with primary aldosteronism. Hypertension. 2010;56:831–8. This landmark paper reports on the first administration of ASI LCI699 to human subjects with primary aldosteronism. The study showed a remarkable reduction in plasma aldosterone concentration and ambulatory blood pressure by ASI LCI699 that was well tolerated in this small study of only 114 patients.

    Article  PubMed  CAS  Google Scholar 

  44. •• Calhoun DA, White W, Krum H, et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension. Results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation. 2011;124:1945–55. This is the first randomized, phase II, dose-finding clinical trial of ASI LC699 in patients with primary hypertension. It was the first study to confirm a clinically significant blood pressure–lowering effect that was well tolerated in this patient group.

    Article  PubMed  CAS  Google Scholar 

  45. •• Andersen K, Hartman D, Peppard T, et al. The effects of aldosterone synthase inhibition on aldosterone and cortisol in patients with hypertension: a phase II, randomized, double-blind, placebo-controlled, multicenter study. J Clin Hypertens (Greenwich). 2012;14:580–7. This paper explored the maximal tolerated dose of LCI699 with regard to cortisol suppression. It confirmed the lack of target selectivity of the agent, causing off-target suppression of cortisol production in 20 % of cases. The MTD of 1.3 mg (0.88-1.81) q.d was identified. Significant blood pressure–lowering effects were found.

    Article  CAS  Google Scholar 

  46. •• Karns AD, Bral JM, Hartman D, et al. Study of aldosterone synthase inhibition as an add-on therapy in resistant hypertension. J Clin Hypertens (Greenwich). 2013;15:186–92. This study of patients with resistant hypertension surprisingly failed to show a statistically significant blood pressure–lowering effect of LCI699 beyond that of placebo and it was inferior to eplerenone. However, aldosterone production was suppressed. This apparent discrepancy raises the question whether the optimal organ protective effect of ASI, alone or in combination with other antihypertensive agents, may be achieved with lower than a maximal blood pressure lowering dose.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Karl Andersen declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, K. Aldosterone Synthase Inhibition in Hypertension. Curr Hypertens Rep 15, 484–488 (2013). https://doi.org/10.1007/s11906-013-0379-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0379-7

Keywords

Navigation