Skip to main content
Log in

The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans

  • Hypertension and the Kidney (RM Carey and A Mimran, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Alterations in the renin angiotensin aldosterone system (RAAS) contribute to the underlying pathophysiology of insulin resistance in humans; however, individual differences in the treatment response of insulin resistance to RAAS blockade persist. Thus, understanding inter-individual differences in the relationship between the RAAS and insulin resistance may provide insights into improved personalized treatments and improved outcomes. The effects of the systemic RAAS on blood pressure regulation and glucose metabolism have been studied extensively; however, recent discoveries on the influence of local tissue RAAS in the skeletal muscle, heart, vasculature, adipocytes, and pancreas have led to an improved understanding of how activated tissue RAAS influences the development of insulin resistance and diabetes in humans. Angiotensin II (ANGII) is the predominant RAAS component contributing to insulin resistance; however, other players such as aldosterone, renin, and ACE2 are also involved. This review examines the role of local ANGII activity on insulin resistance development in skeletal muscle, adipocytes, and pancreas, followed by a discussion of the other RAAS components implicated in insulin resistance, including ACE2, Ang1-7, renin, and aldosterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Neeland IJ, Turer AT, Ayers CR, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012;308:1150–9.

    Article  PubMed  CAS  Google Scholar 

  2. Sasso FC, Carbonara O, Nasti R, et al. Glucose metabolism and coronary heart disease in patients with normal glucose tolerance. JAMA. 2004;291:1857–63.

    Article  PubMed  CAS  Google Scholar 

  3. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  PubMed  CAS  Google Scholar 

  4. Davila EP, Florez LE, Fleming LE, et al. Prevalence of the metabolic syndrome among U.S. workers. Diabetes Care. 2010; 33(11):2390–95.

  5. Ford ES. Prevalence of the metabolic syndrome in US populations. Endocrinol Metab Clin North Am. 2004;33:333–50.

    Article  PubMed  Google Scholar 

  6. Ford ES, Li C, Sattar N. Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care. 2008;31:1898–904.

    Article  PubMed  Google Scholar 

  7. Ofili EO, Oparil S, Giles T, et al. Moderate versus intensive treatment of hypertension using amlodipine/valsartan and with the addition of hydrochlorothiazide for patients uncontrolled on angiotensin receptor blocker monotherapy: results in racial/ethnic subgroups. J Am Soc Hypertens. 2011;5:249–58.

    Article  PubMed  Google Scholar 

  8. Campbell CY, Blumenthal RS. Pharmacogenetics of antihypertensive response. Hypertension. 2012;59:1094–6.

    Article  PubMed  CAS  Google Scholar 

  9. •• McMurray JJ, Holman RR, Haffner SM, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med 2010;362:1477–90. The NAVIGATOR study, one of the first prospective randomized control trials powered to evaluate the effect of RAAS blockade (valsartan) on incidence of diabetes as a primary endpoint. Individuals receiving valsartan had a 14 % reduction in the incidence of diabetes compared to the placebo control group.

  10. •• van der Zijl NJ, Moors CC, Goossens GH, Hermans MM, Blaak EE, Diamant M. Valsartan improves {beta}-cell function and insulin sensitivity in subjects with impaired glucose metabolism: a randomized controlled trial. Diabetes Care 2011;34:845–51. This is the first randomized control trial in humans that evaluated the effect of an ARB versus placebo on beta cell function. Chronic valsartan treatment, compared with placebo control, improved glucose stimulated insulin secretion during an oral glucose tolerance test as well as insulin sensitivity assessed by euglycemic clamp, suggesting that ARB blockade has an effect not only on glucose uptake, but also pancreatic insulin secretion.

  11. Abuissa H, Jones PG, Marso SP, O'Keefe JH. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J Am Coll Cardiol. 2005;46:821–6.

    Article  PubMed  CAS  Google Scholar 

  12. Perlstein TS, Henry RR, Mather KJ, et al. Effect of angiotensin receptor blockade on insulin sensitivity and endothelial function in abdominally obese hypertensive patients with impaired fasting glucose. Clin Sci (Lond). 2012;122:193–202.

    CAS  Google Scholar 

  13. Lteif AA, Chisholm RL, Gilbert K, Considine RV, Mather KJ. Effects of losartan on whole body, skeletal muscle and vascular insulin responses in obesity/insulin resistance without hypertension. Diabetes Obes Metab. 2012;14:254–61.

    Article  PubMed  CAS  Google Scholar 

  14. Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2012. doi:10.1016/j.mce.2012.06.021.

  15. Putnam K, Shoemaker R, Yiannikouris F, Cassis LA. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am J Physiol Heart Circ Physiol. 2012;302:H1219–30.

    Article  PubMed  CAS  Google Scholar 

  16. Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol. 2012. doi:10.1016/j.mce.2012.05.017.

  17. Henriksen EJ, Prasannarong M. The role of the renin angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol. 2012. doi:10.1016/j.mce.2012.04.011.

  18. Yatabe J, Yoneda M, Yatabe MS, et al. Angiotensin III stimulates aldosterone secretion from adrenal gland partially via angiotensin II type 2 receptor but not angiotensin II type 1 receptor. Endocrinology. 2011;152:1582–8.

    Article  PubMed  CAS  Google Scholar 

  19. Qi Y, Li H, Shenoy V, et al. Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Exp Physiol. 2012;97:89–101.

    PubMed  CAS  Google Scholar 

  20. Leung PS. Mechanisms of protective effects induced by blockade of the renin-angiotensin system: novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabet Med. 2007;24:110–6.

    Article  PubMed  CAS  Google Scholar 

  21. Grassi G, Seravalle G, Dell'Oro R, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens. 2003;21:1761–9.

    Article  PubMed  CAS  Google Scholar 

  22. Olsen MH, Wachtell K, Neland K, et al. Losartan but not atenolol reduce carotid artery hypertrophy in essential hypertension. A LIFE substudy. Blood Press. 2005;14:177–83.

    Article  PubMed  CAS  Google Scholar 

  23. Jin HM, Pan Y. Angiotensin type-1 receptor blockade with losartan increases insulin sensitivity and improves glucose homeostasis in subjects with type 2 diabetes and nephropathy. Nephrol Dial Transplant. 2007;22:1943–9.

    Article  PubMed  CAS  Google Scholar 

  24. •• Bosch J, Yusuf S, Gerstein HC, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med 2006;355:1551–62. The DREAM trial is one of the first prospective randomized control trials powered to evaluate the effect of RAAS blockade (ramipril) on incidence of diabetes as a primary endpoint. There was no significant difference in the incidence of diabetes in those given ramipril vs. placebo; however, the ramipril group did have a higher regression to normoglycemia compared with controls.

  25. Hansson L, Lindholm LH, Ekbom T, et al. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity the Swedish Trial in Old Patients with Hypertension-2 study. Lancet. 1999;354:1751–6.

    Article  PubMed  CAS  Google Scholar 

  26. Trial AOaCftACRGTAaL-LTtPHA. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002;288:2981–97.

    Google Scholar 

  27. Kjeldsen SE, Dahlöf B, Devereux RB, et al. Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a Losartan Intervention for Endpoint Reduction (LIFE) substudy. JAMA. 2002;288:1491–8.

    Article  PubMed  CAS  Google Scholar 

  28. Dahlöf B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  PubMed  Google Scholar 

  29. Lindholm LH, Ibsen H, Borch-Johnsen K, et al. Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study. J Hypertens. 2002;20:1879–86.

    Article  PubMed  CAS  Google Scholar 

  30. Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR. Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A. 1996;93:12490–5.

    Article  PubMed  CAS  Google Scholar 

  31. Ogihara T, Asano T, Ando K, et al. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002;40:872–9.

    Article  PubMed  CAS  Google Scholar 

  32. Manrique C, Lastra G, Gardner M, Sowers JR. The renin angiotensin aldosterone system in hypertension: roles of insulin resistance and oxidative stress. Med Clin North Am. 2009;93:569–82.

    Article  PubMed  CAS  Google Scholar 

  33. Chai W, Wang W, Liu J, et al. Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use. Hypertension. 2010;55:523–30.

    Article  PubMed  CAS  Google Scholar 

  34. • Goossens GH, Blaak EE, Saris WH, van Baak MA. Angiotensin II-induced effects on adipose and skeletal muscle tissue blood flow and lipolysis in normal-weight and obese subjects. J Clin Endocrinol Metab 2004;89:2690–6. A physiologic human study that evaluated the effects of ANGII infusion on lipolysis in skeletal muscle and adipose tissue, demonstrating that ANGII inhibits lipolysis (which may increase insulin resistance) in these tissues in both obese and healthy individuals. A limitation of this study is that measurements of insulin resistance were not measured to determine whether they correlated with decreases in lipolysis.

  35. Sauder MA, Liu J, Jahn LA, Fowler DE, Chai W, Liu Z. Candesartan acutely recruits skeletal and cardiac muscle microvasculature in healthy humans. J Clin Endocrinol Metab. 2012;97:E1208–12.

    Article  PubMed  CAS  Google Scholar 

  36. Diamond-Stanic MK, Henriksen EJ. Direct inhibition by angiotensin II of insulin-dependent glucose transport activity in mammalian skeletal muscle involves a ROS-dependent mechanism. Arch Physiol Biochem. 2010;116:88–95.

    Article  PubMed  CAS  Google Scholar 

  37. Jacob S, Henriksen EJ, Fogt DL, Dietze GJ. Effects of trandolapril and verapamil on glucose transport in insulin-resistant rat skeletal muscle. Metabolism. 1996;45:535–41.

    Article  PubMed  CAS  Google Scholar 

  38. Henriksen EJ, Jacob S, Kinnick TR, Teachey MK, Krekler M. Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension. 2001;38:884–90.

    Article  PubMed  CAS  Google Scholar 

  39. Wei Y, Sowers JR, Nistala R, et al. Angiotensin II-induced NADPH oxidase activation impairs insulin signaling in skeletal muscle cells. J Biol Chem. 2006;281:35137–46.

    Article  PubMed  CAS  Google Scholar 

  40. Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS. Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab. 2008;294:E345–51.

    Article  PubMed  CAS  Google Scholar 

  41. Goossens GH, Blaak EE, Schiffers PM, Saris WH, van Baak MA. Effect of short-term ACE inhibitor treatment on peripheral insulin sensitivity in obese insulin-resistant subjects. Diabetologia. 2006;49:3009–16.

    Article  PubMed  CAS  Google Scholar 

  42. Seghieri G, Yin W, Boni C, et al. Effect of chronic ACE inhibition on glucose tolerance and insulin sensitivity in hypertensive type 2 diabetic patients. Diabet Med. 1992;9:732–8.

    Article  PubMed  CAS  Google Scholar 

  43. Townsend RR, DiPette DJ. Pressor doses of angiotensin II increase insulin-mediated glucose uptake in normotensive men. Am J Physiol. 1993;265:E362–6.

    PubMed  CAS  Google Scholar 

  44. Fliser D, Arnold U, Kohl B, Hartung R, Ritz E. Angiotensin II enhances insulin sensitivity in healthy volunteers under euglycemic conditions. J Hypertens. 1993;11:983–8.

    Article  PubMed  CAS  Google Scholar 

  45. Widgren BR, Urbanavicius V, Wikstrand J, Attvall S, Persson B. Low-dose angiotensin II increases glucose disposal rate during euglycemic hyperinsulinemia. Am J Hypertens. 1993;6:892–5.

    PubMed  CAS  Google Scholar 

  46. Buchanan TA, Thawani H, Kades W, et al. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. J Clin Invest. 1993;92:720–6.

    Article  PubMed  CAS  Google Scholar 

  47. Goossens GH. The Renin-Angiotensin system in the pathophysiology of type 2 diabetes. Obes Facts. 2012;5:611–24.

    Article  PubMed  CAS  Google Scholar 

  48. Karlsson C, Lindell K, Ottosson M, Sjöström L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metab. 1998;83:3925–9.

    Article  PubMed  CAS  Google Scholar 

  49. Bentley-Lewis R, Adler GK, Perlstein T, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92:4472–5.

    Article  PubMed  CAS  Google Scholar 

  50. Vaidya A, Forman JP, Underwood PC, et al. The influence of body mass index and renin-angiotensin-aldosterone system activity on the relationship between 25-hydroxyvitamin D and adiponectin in Caucasian men. Eur J Endocrinol. 2011;164:995–1002.

    Article  PubMed  CAS  Google Scholar 

  51. Yasue S, Masuzaki H, Okada S, et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23:425–31.

    Article  PubMed  CAS  Google Scholar 

  52. Goossens GH, Blaak EE, Arner P, Saris WH, van Baak MA. Angiotensin II: a hormone that affects lipid metabolism in adipose tissue. Int J Obes (Lond). 2007;31:382–4.

    Article  CAS  Google Scholar 

  53. Yvan-Charvet L, Even P, Bloch-Faure M, et al. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes. 2005;54:991–9.

    Article  PubMed  CAS  Google Scholar 

  54. Beyer AM, Raffai G, Weinberg B, Fredrich K, Lombard JH. Dahl salt-sensitive rats are protected against vascular defects related to diet-induced obesity. Hypertension. 2012;60:404–10.

    Article  PubMed  CAS  Google Scholar 

  55. van der Zijl NJ, Serné EH, Goossens GH, et al. Valsartan-induced improvement in insulin sensitivity is not paralleled by changes in microvascular function in individuals with impaired glucose metabolism. J Hypertens. 2011;29:1955–62.

    Article  PubMed  CAS  Google Scholar 

  56. Engeli S, Böhnke J, Gorzelniak K, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45:356–62.

    Article  PubMed  CAS  Google Scholar 

  57. Putnam K, Batifoulier-Yiannikouris F, Bharadwaj KG, et al. Deficiency of Angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice. Endocrinology. 2012;153:4677–86.

    Article  PubMed  CAS  Google Scholar 

  58. Lee MH, Song HK, Ko GJ, et al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int. 2008;74:890–900.

    Article  PubMed  CAS  Google Scholar 

  59. Sarzani R, Marcucci P, Salvi F, et al. Angiotensin II stimulates and atrial natriuretic peptide inhibits human visceral adipocyte growth. Int J Obes (Lond). 2008;32:259–67.

    Article  CAS  Google Scholar 

  60. Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors. Diabetes. 2002;51:1699–707.

    Article  PubMed  CAS  Google Scholar 

  61. Goossens GH, Moors CC, van der Zijl NJ, et al. Valsartan improves adipose tissue function in humans with impaired glucose metabolism: a randomized placebo-controlled double-blind trial. PLoS One. 2012;7:e39930.

    Article  PubMed  CAS  Google Scholar 

  62. Chu KY, Lau T, Carlsson PO, Leung PS. Angiotensin II type 1 receptor blockade improves beta-cell function and glucose tolerance in a mouse model of type 2 diabetes. Diabetes. 2006;55:367–74.

    Article  PubMed  CAS  Google Scholar 

  63. •• Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension 2010;55:715–21. An elegant study demonstrating that valsartan blocks western diet induced increases in inflammation, insulin levels, and glucose stimulated insulin secretion in a mouse model of the metabolic syndrome. Results of this study demonstrate that the RAAS influences the relationship between high fat diet and a worsening metabolic profile and suggests that blocking the RAAS in individuals eating a high fat diet, a common problem in today's society, may be beneficial.

  64. Muñoz C, Giani JF, Dominici FP, Turyn D, Toblli JE. Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats. J Hypertens. 2009;27:2409–20.

    Article  PubMed  CAS  Google Scholar 

  65. Fujisaka S, Usui I, Kanatani Y, et al. Telmisartan improves insulin resistance and modulates adipose tissue macrophage polarization in high-fat-fed mice. Endocrinology. 2011;152:1789–99.

    Article  PubMed  CAS  Google Scholar 

  66. Pscherer S, Heemann U, Frank H. Effect of Renin-Angiotensin system blockade on insulin resistance and inflammatory parameters in patients with impaired glucose tolerance. Diabetes Care. 2010;33:914–9.

    Article  PubMed  CAS  Google Scholar 

  67. Chappell MC, Millsted A, Diz DI, Brosnihan KB, Ferrario CM. Evidence for an intrinsic angiotensin system in the canine pancreas. J Hypertens. 1991;9:751–9.

    Article  PubMed  CAS  Google Scholar 

  68. Chappell MC, Jacobsen DW, Tallant EA. Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42J cells. Peptides. 1995;16:741–7.

    Article  PubMed  CAS  Google Scholar 

  69. Batlle D, Jose Soler M, Ye M. ACE2 and diabetes: ACE of ACEs? Diabetes. 2010;59:2994–6.

    Article  PubMed  CAS  Google Scholar 

  70. Yuan L, Li X, Xu GL, Qi CJ. Effects of renin-angiotensin system blockade on islet function in diabetic rats. J Endocrinol Invest. 2010;33:13–9.

    PubMed  CAS  Google Scholar 

  71. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41:127–33.

    Article  PubMed  CAS  Google Scholar 

  72. Huang Z, Jansson L, Sjöholm A. Vasoactive drugs enhance pancreatic islet blood flow, augment insulin secretion and improve glucose tolerance in female rats. Clin Sci (Lond). 2007;112:69–76.

    Article  CAS  Google Scholar 

  73. Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47:240–8.

    Article  PubMed  CAS  Google Scholar 

  74. Juan CC, Chien Y, Wu LY, et al. Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology. 2005;146:2246–54.

    Article  PubMed  CAS  Google Scholar 

  75. •• Rodriguez R, Viscarra JA, Minas JN, Nakano D, Nishiyama A, Ortiz RM. Angiotensin receptor blockade increases pancreatic insulin secretion and decreases glucose intolerance during glucose supplementation in a model of metabolic syndrome. Endocrinology 2012;153:1684–95. A novel study demonstrating the effects of ARB treatment (olmesartan) on pancreatic insulin secreation and GLP-1 signalling in a rat model of the metabolic syndrome-OLETF rats. Interestingly, olmesartan resulted in improvements in glucose stimulated pancreatic insulin secretion, decreases in pancreatic AT1R activation, and increases in GLP-1 signaling without changes in insulin signaling in the skeletal muscle. This is the first study to suggest that the relationship between RAAS blockade and improvements in insulin resistance may be mediated by changes in GLP-1 signaling.

  76. Sowers JR, Raij L, Jialal I, et al. Angiotensin receptor blocker/diuretic combination preserves insulin responses in obese hypertensives. J Hypertens. 2010;28:1761–9.

    Article  PubMed  CAS  Google Scholar 

  77. Bokhari S, Israelian Z, Schmidt J, Brinton E, Meyer C. Effects of angiotensin II type 1 receptor blockade on beta-cell function in humans. Diabetes Care. 2007;30:181.

    Article  PubMed  Google Scholar 

  78. Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1–7)-Mas receptor axis. Hypertens Res. 2009;32:533–6.

    Article  PubMed  CAS  Google Scholar 

  79. Santos SH, Fernandes LR, Mario EG, et al. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 2008;57:340–7.

    Article  PubMed  CAS  Google Scholar 

  80. Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, Angiotensin-(1–7) and Mas: new players of the Renin Angiotensin System. J Endocrinol. 2012. doi:10.1530/JOE-12-0341.

  81. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000;87:E1–9.

    Article  PubMed  CAS  Google Scholar 

  82. Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302:193–202.

    Article  PubMed  CAS  Google Scholar 

  83. Gembardt F, Sterner-Kock A, Imboden H, et al. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26:1270–7.

    Article  PubMed  CAS  Google Scholar 

  84. Tikellis C, Pickering RJ, Tsorotes D, et al. Activation of the Renin-Angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension. 2012;60:98–105.

    Article  PubMed  CAS  Google Scholar 

  85. Fernandes L, Fortes ZB, Nigro D, Tostes RC, Santos RA, Catelli De Carvalho MH. Potentiation of bradykinin by angiotensin-(1–7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension. 2001;37:703–9.

    Article  PubMed  CAS  Google Scholar 

  86. • Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010;59:2540–8. This is one of the first animal studies to show the beneficial effects of ACE2 on pancreatic function and glycemia. Human ACE2 delivered directly to the pancreas resulted in improved fasting glucose, reduced beta cell apoptosis, and improved beta cell proliferation in 8 week old db/db mice.

  87. Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100:8258–63.

    Article  PubMed  CAS  Google Scholar 

  88. Giani JF, Mayer MA, Muñoz MC, et al. Chronic infusion of angiotensin-(1–7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab. 2009;296:E262–71.

    Article  PubMed  CAS  Google Scholar 

  89. Prasannarong M, Santos FR, Henriksen EJ. ANG-(1–7) reduces ANG II-induced insulin resistance by enhancing Akt phosphorylation via a Mas receptor-dependent mechanism in rat skeletal muscle. Biochem Biophys Res Commun. 2012;426:369–73.

    Article  PubMed  CAS  Google Scholar 

  90. Takeda M, Yamamoto K, Takemura Y et al. Loss of Ace2 exaggerates high-calorie diet induced insulin resistance by reduction of glut4 in mice. Diabetes. 2012. doi:10.2337/db12-0177.

  91. Patel VB, Bodiga S, Basu R, et al. Loss of angiotensin-converting enzyme-2 exacerbates diabetic cardiovascular complications and leads to systolic and vascular dysfunction: a critical role of the angiotensin II/AT1 receptor axis. Circ Res. 2012;110:1322–35.

    Article  PubMed  CAS  Google Scholar 

  92. Soro-Paavonen A, Gordin D, Forsblom C, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications. J Hypertens. 2012;30:375–83.

    Article  PubMed  CAS  Google Scholar 

  93. Xiao F, Hiremath S, Knoll G, et al. Increased urinary angiotensin-converting enzyme 2 in renal transplant patients with diabetes. PLoS One. 2012;7:e37649.

    Article  PubMed  CAS  Google Scholar 

  94. Briet M, Schiffrin El. The role of aldosterone in the metabolic syndrome. Hypertension Reports. 2011;13(2)163–172.

    Google Scholar 

  95. Garg R, Hurwitz S, Williams GH, Hopkins PN, Adler GK. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95:1986–90.

    Article  PubMed  CAS  Google Scholar 

  96. Luther JM, Brown NJ. The renin-angiotensin-aldosterone system and glucose homeostasis. Trends Pharmacol Sci. 2011;32:734–9.

    Article  PubMed  CAS  Google Scholar 

  97. Somlóová Z, Widimský J, Rosa J, et al. The prevalence of metabolic syndrome and its components in two main types of primary aldosteronism. J Hum Hypertens. 2010;24:625–30.

    Article  PubMed  CAS  Google Scholar 

  98. Fallo F, Della Mea P, Sonino N, et al. Adiponectin and insulin sensitivity in primary aldosteronism. Am J Hypertens. 2007;20:855–61.

    Article  PubMed  CAS  Google Scholar 

  99. Catena C, Lapenna R, Baroselli S, et al. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab. 2006;91:3457–63.

    Article  PubMed  CAS  Google Scholar 

  100. Ingelsson E, Pencina MJ, Tofler GH, et al. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation. 2007;116:984–92.

    Article  PubMed  CAS  Google Scholar 

  101. Bochud M, Nussberger J, Bovet P, et al. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension. 2006;48:239–45.

    Article  PubMed  CAS  Google Scholar 

  102. Hannemann A, Meisinger C, Bidlingmaier M, et al. Association of plasma aldosterone with the metabolic syndrome in two German populations. Eur J Endocrinol. 2011;164:751–8.

    Article  PubMed  CAS  Google Scholar 

  103. Kumagai E, Adachi H, Jacobs DR, et al. Plasma aldosterone levels and development of insulin resistance: prospective study in a general population. Hypertension. 2011;58:1043–8.

    Article  PubMed  CAS  Google Scholar 

  104. Raheja P, Price A, Wang Z, et al. Spironolactone prevents chlorthalidone-induced sympathetic activation and insulin resistance in hypertensive patients. Hypertension. 2012;60:319–25.

    Article  PubMed  CAS  Google Scholar 

  105. Selvaraj J, Sathish S, Mayilvanan C, Balesubramanian K. Excess aldosterone induced changes in insulin signaling molecultes and glucose oxidation in gastrocnemium muscle of adult male rat. Mol Cell Biochem. 2012. doi:10.1007/s11010-012-1452-2.

  106. Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3 T3-L1 adipocytes. Endocrinology. 2009;150:1662–9.

    Article  PubMed  CAS  Google Scholar 

  107. Luther JM, Luo P, Kreger MT, et al. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia. 2011;54:2152–63.

    Article  PubMed  CAS  Google Scholar 

  108. • Briones AM, Nguyen Dinh Cat A, Callera GE, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012;59:1069–78. The first study to demonstrate that aldosterone is produced locally in adipocytes, providing a physiologic link between the association of higher aldosterone levels and insulin resistance in obese individuals.

  109. Goodfriend TL, Egan BM, Kelley DE. Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Essent Fatty Acids. 1999;60:401–5.

    Article  PubMed  CAS  Google Scholar 

  110. Fogari R, Zoppi A, Mugellini A, Lazzari P, Derosa G. Different effects of aliskiren and losartan on fibrinolysis and insulin sensitivity in hypertensive patients with metabolic syndrome. Horm Metab Res. 2010;42:892–6.

    Article  PubMed  CAS  Google Scholar 

  111. Chou CL, Lai YH, Lin TY, Lee TJ, Fang TC. Aliskiren prevents and ameliorates metabolic syndrome in fructose-fed rats. Arch Med Sci. 2011;7:882–8.

    Article  PubMed  CAS  Google Scholar 

  112. Chou CL, Pang CY, Fang TC. Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose fed hypertensive rats. Hypertens Res. 2012. doi:10.1038/hr.2012.124.

  113. Lastra G, Habibi J, Whaley-Connell AT, et al. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression. Endocrinology. 2009;150:2561–8.

    Article  PubMed  CAS  Google Scholar 

  114. Chen W, Srinivasan SR, Berenson GS. Plasma renin activity and insulin resistance in African American and white children: the Bogalusa Heart Study. Am J Hypertens. 2001;14:212–7.

    Article  PubMed  CAS  Google Scholar 

  115. Guo X, Cheng S, Taylor KD, et al. Hypertension genes are genetic markers for insulin sensitivity and resistance. Hypertension. 2005;45:799–803.

    Article  PubMed  CAS  Google Scholar 

  116. • Bonnet F, Patel S, Laville M, et al. Influence of the ACE gene insertion/deletion polymorphism on insulin sensitivity and impaired glucose tolerance in healthy subjects. Diabetes Care 2008;31:789–94. The largest human genetics study (N = 1,286) that demonstrates a strong positive association between ACE gene insertion/deletion polymorphism and increased insulin resistance in humans.

  117. Chen G, Bentley A, Adeyemo A, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet. 2012;21:4530–6.

    Article  PubMed  CAS  Google Scholar 

  118. Strawbridge RJ, Dupuis J, Prokopenko I, et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes. 2011;60:2624–34.

    Article  PubMed  CAS  Google Scholar 

  119. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed  CAS  Google Scholar 

  120. Kawai T, Ohishi M, Onishi M et al. Influence of the renin angiotensin system gene polymorphisms on visit-to-visit blood pressure variability in hypertensive patients. Am J Hypertension. 2012;12:1249–55.

    Google Scholar 

  121. Chen YH, Liu JM, Hsu RJ, et al. Angiotensin converting enzyme DD genotype is associated with acute coronary syndrome severity and sudden cardiac death in Taiwan: a case–control emergency room study. BMC Cardiovasc Disord. 2012;12:6.

    Article  PubMed  CAS  Google Scholar 

  122. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–6.

    Article  PubMed  CAS  Google Scholar 

  123. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation. 1995;92:1387–8.

    Article  PubMed  CAS  Google Scholar 

  124. Bloem LJ, Manatunga AK, Pratt JH. Racial difference in the relationship of an angiotensin I-converting enzyme gene polymorphism to serum angiotensin I-converting enzyme activity. Hypertension. 1996;27:62–6.

    Article  PubMed  CAS  Google Scholar 

  125. Huang XH, Rantalaiho V, Wirta O, et al. Relationship of the angiotensin-converting enzyme gene polymorphism to glucose intolerance, insulin resistance, and hypertension in NIDDM. Hum Genet. 1998;102:372–8.

    Article  PubMed  CAS  Google Scholar 

  126. Ohishi M, Rakugi H, Miki T, et al. Deletion polymorphism of angiotensin-converting enzyme gene is associated with postprandial hyperglycaemia in individuals undergoing general check-up. Clin Exp Pharmacol Physiol. 2000;27:483–7.

    Article  PubMed  CAS  Google Scholar 

  127. Lee YJ, Tsai JC. ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care. 2002;25:1002–8.

    Article  PubMed  CAS  Google Scholar 

  128. Katsuya T, Horiuchi M, Chen YD, et al. Relations between deletion polymorphism of the angiotensin-converting enzyme gene and insulin resistance, glucose intolerance, hyperinsulinemia, and dyslipidemia. Arterioscler Thromb Vasc Biol. 1995;15:779–82.

    Article  PubMed  CAS  Google Scholar 

  129. Panahloo A, Andrès C, Mohamed-Ali V, et al. The insertion allele of the ACE gene I/D polymorphism. A candidate gene for insulin resistance? Circulation. 1995;92:3390–3.

    Article  PubMed  CAS  Google Scholar 

  130. Zhou JB, Yang JK, Lu JK, An YH. Angiotensin-converting enzyme gene polymorphism is associated with type 2 diabetes: a meta-analysis. Mol Biol Rep. 2010;37:67–73.

    Article  PubMed  CAS  Google Scholar 

  131. Niu W, Qi Y, Gao P, Zhu D. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: evidence from a meta-analysis. Endocr J. 2010;57:431–8.

    Article  PubMed  CAS  Google Scholar 

  132. Kosachunhanun N, Hunt SC, Hopkins PN, et al. Genetic determinants of nonmodulating hypertension. Hypertension. 2003;42:901–8.

    Article  PubMed  CAS  Google Scholar 

  133. Niemiec P, Zak I, Wita K. The M235T polymorphism of the AGT gene modifies the risk of coronary artery disease associated with the presence of hypercholesterolemia. Eur J Epidemiol. 2008;23:349–54.

    Article  PubMed  CAS  Google Scholar 

  134. Watkins WS, Hunt SC, Williams GH, et al. Genotype-phenotype analysis of angiotensinogen polymorphisms and essential hypertension: the importance of haplotypes. J Hypertens. 2010;28:65–75.

    Article  PubMed  CAS  Google Scholar 

  135. Pollex RL, Hanley AJ, Zinman B, Harris SB, Khan HM, Hegele RA. Metabolic syndrome in aboriginal Canadians: prevalence and genetic associations. Atherosclerosis. 2006;184:121–9.

    Article  PubMed  CAS  Google Scholar 

  136. Underwood PC, Sun B, Williams JS, et al. The association of the angiotensinogen gene with insulin sensitivity in humans: a tagging single nucleotide polymorphism and haplotype approach. Metabolism. 2011;60:1150–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail K. Adler.

Additional information

Grant support

This work is supported by NIH/NHLBI K24HL103845 (Adler, PI) and NIH/NINR F32NR013318 (Underwood, PI).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Underwood, P.C., Adler, G.K. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Curr Hypertens Rep 15, 59–70 (2013). https://doi.org/10.1007/s11906-012-0323-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0323-2

Keywords

Navigation