Skip to main content
Log in

Cardiomyocyte autophagy: Remodeling, repairing, and reconstructing the heart

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved catabolic pathway of lysosome-dependent turnover of damaged proteins and organelles. When nutrients are in short supply, bulk removal of cytoplasmic components by autophagy replenishes depleted energy stores, a process critical for maintaining cellular homeostasis. However, prolonged activation of autophagic pathways can result in cell death. Longstanding evidence has linked the stimulation of lysosomal pathways to pathologic cardiac remodeling and a number of cardiac diseases, including heart failure and ischemia. Only recently, however, has work begun to parse cytoprotective autophagy from autophagy that contributes to disease pathogenesis. Current thinking suggests that the effects of autophagy exist on a continuum, with the eliciting triggers, the duration and amplitude of autophagic flux, and possibly the targeted intra cellular cargo as critical determinants of the end result. Deciphering how autophagy participates in basal homeostasis of the heart, in aging, and in disease pathogenesis may uncover novel insights with clinical relevance in the treatment of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lloyd-Jones D, Adams R, Carnethon M, et al.: Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009, 119:e21–e181.

    Article  PubMed  Google Scholar 

  2. Hill JA, Olson EN: Cardiac plasticity. N Engl J Med 2008, 358:1370–1380.

    Article  CAS  PubMed  Google Scholar 

  3. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y: Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 2009, 10:458–467.

    Article  CAS  PubMed  Google Scholar 

  4. Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451:1069–1075.

    Article  CAS  PubMed  Google Scholar 

  5. Levine B, Kroemer G: Autophagy in aging, disease and death: the true identity of a cell death impostor. Cell Death Differ 2009, 16:1–2.

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G, Galluzzi L, Vandenabeele P, et al.: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009, 16:3–11.

    Article  CAS  PubMed  Google Scholar 

  7. Kroemer G, Levine B: Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008, 9:1004–1010.

    Article  CAS  PubMed  Google Scholar 

  8. Perlmutter DH: Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in alpha-1-antitrypsin deficiency. Cell Death Differ 2009, 16:39–45.

    Article  CAS  PubMed  Google Scholar 

  9. Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC: Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009, 16:46–56.

    Article  CAS  PubMed  Google Scholar 

  10. Gutierrez MG, Master SS, Singh SB, et al.: Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004, 119:753–766.

    Article  CAS  PubMed  Google Scholar 

  11. Schmid D, Pypaert M, Munz C: Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 2007, 26:79–92.

    Article  CAS  PubMed  Google Scholar 

  12. Hars ES, Qi H, Ryazanov AG, et al.: Autophagy regulates ageing in C. elegans. Autophagy 2007, 3:93–95.

    CAS  PubMed  Google Scholar 

  13. Alvers AL, Wood MS, Hu D, et al.: Autophagy is required for extension of yeast chronological life span by rapamycin. Autophagy 2009, 5:847–849.

    CAS  PubMed  Google Scholar 

  14. Alvers AL, Fishwick LK, Wood MS, et al.: Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell 2009, 8:353–369.

    Article  CAS  PubMed  Google Scholar 

  15. Gamerdinger M, Hajieva P, Kaya AM, et al.: Protein quality control during aging involves recruitment of the macroau — tophagy pathway by BAG3. EMBO J 2009, 28:889–901.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu H, Tannous P, Johnstone JL, et al.: Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 2007, 117:1782–1793.

    Article  CAS  PubMed  Google Scholar 

  17. Maron BJ, Roberts WC, Arad M, et al.: Clinical outcome and phenotypic expression in LAMP2 cardiomyopathy. JAMA 2009, 301:1253–1259.

    Article  CAS  PubMed  Google Scholar 

  18. Ruivo R, Anne C, Sagne C, Gasnier B: Molecular and cellular basis of lysosomal transmembrane protein dysfunction. Biochim Biophys Acta 2009, 1793:636–649.

    Article  CAS  PubMed  Google Scholar 

  19. Verity MA: Infantile Pompe’s disease, lipid storage, and partial carnitine deficiency. Muscle Nerve 1991, 14:435–440.

    Article  CAS  PubMed  Google Scholar 

  20. Yu W, Gong JS, Ko M, et al.: Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 2005, 280:11731–11739.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Osinska H, Klevitsky R, et al.: Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice. Circ Res 2001, 89:84–91.

    Article  CAS  PubMed  Google Scholar 

  22. Tannous P, Zhu H, Johnstone JL, et al.: Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A 2008, 105:9745–9750.

    Article  CAS  PubMed  Google Scholar 

  23. Terman A, Dalen H, Eaton JW, et al.: Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 2003, 38:863–876.

    Article  CAS  PubMed  Google Scholar 

  24. Juhaszova M, Rabuel C, Zorov DB, et al.: Protection in the aged heart: preventing the heart-break of old age? Cardiovasc Res 2005, 66:233–244.

    Article  CAS  PubMed  Google Scholar 

  25. Trifunovic A, Wredenberg A, Falkenberg M, et al.: Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429:417–423.

    Article  CAS  PubMed  Google Scholar 

  26. Simonsen A, Cumming RC, Brech A, et al.: Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008, 4:176–184.

    CAS  PubMed  Google Scholar 

  27. Hansen M, Chandra A, Mitic LL, et al.: A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 2008, 4:e24.

    Article  PubMed  Google Scholar 

  28. Toth ML, Sigmond T, Borsos E, et al.: Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 2008, 4:330–338.

    CAS  PubMed  Google Scholar 

  29. Wohlgemuth SE, Julian D, Akin DE, et al.: Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res 2007, 10:281–292.

    Article  CAS  PubMed  Google Scholar 

  30. Rothermel BA, Hill JA: Autophagy in load-induced heart disease. Circ Res 2008, 103:1363–1369.

    Article  CAS  PubMed  Google Scholar 

  31. Yan L, Vatner DE, Kim SJ, et al.: Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U S A 2005, 102:13807–13812.

    Article  CAS  PubMed  Google Scholar 

  32. Hill JA, Karimi M, Kutschke W, et al.: Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 2000, 101:2863–2869.

    CAS  PubMed  Google Scholar 

  33. Frey N, Katus HA, Olson EN, Hill JA: Hypertrophy of the heart: a new therapeutic target? Circulation 2004, 109:1580–1589.

    Article  PubMed  Google Scholar 

  34. Nakai A, Yamaguchi O, Takeda T, et al.: The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 2007, 13:619–624.

    Article  CAS  PubMed  Google Scholar 

  35. Mathew J, Sleight P, Lonn E, et al.: Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 2001, 104:1615–1621.

    Article  CAS  PubMed  Google Scholar 

  36. Rame JE, Dries DL: Heart failure and cardiac hypertrophy. Curr Treat Options Cardiovasc Med 2007, 9:289–301.

    Article  PubMed  Google Scholar 

  37. Berenji K, Drazner MH, Rothermel BA, Hill JA: Does load-induced ventricular hypertrophy progress to systolic heart failure? Am J Physiol Heart Circ Physiol 2005, 289:H8–H16.

    Article  CAS  PubMed  Google Scholar 

  38. Drazner MH, Rame JE, Marino EK, et al.: Increased left ventricular mass is a risk factor for the development of a depressed left ventricular ejection fraction within five years: the Cardiovascular Health Study. J Am Coll Cardiol 2004, 43:2207–2215.

    Article  PubMed  Google Scholar 

  39. Hilfiker-Kleiner D, Landmesser U, Drexler H: Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am Coll Cardiol 2006, 48:56–66.

    Article  Google Scholar 

  40. Zhu H, Rothermel BA, Hill JA: Autophagy in load-induced heart disease. Methods Enzymol 2009, 453:343–363.

    Article  CAS  PubMed  Google Scholar 

  41. Sugimoto S: A novel vacuolar myopathy with dilated cardiomyopathy. Autophagy 2007, 3:638–639.

    CAS  PubMed  Google Scholar 

  42. Akazawa H, Komazaki S, Shimomura H, et al.: Diphtheria toxin-induced autophagic cardiomyocyte death plays a pathogenic role in mouse model of heart failure. J Biol Chem 2004, 279:41095–41103.

    Article  CAS  PubMed  Google Scholar 

  43. Shimomura H, Terasaki F, Hayashi T, et al.: Autophagic degeneration as a possible mechanism of myocardial cell death in dilated cardiomyopathy. Jpn Circ J 2001, 65:965–968.

    Article  CAS  PubMed  Google Scholar 

  44. Kostin S, Pool L, Elsasser A, et al.: Myocytes die by multi ple mechanisms in failing human hearts. Circ Res 2003, 92:715–724.

    Article  CAS  PubMed  Google Scholar 

  45. Sybers HD, Ingwall J, DeLuca M: Autophagy in cardiac myocytes. Recent Adv Stud Cardiac Struct Metab 1976, 12:453–463.

    CAS  PubMed  Google Scholar 

  46. Decker RS, Wildenthal K: Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 1980, 98:425–444.

    CAS  PubMed  Google Scholar 

  47. Hamacher-Brady A, Brady NR, Gottlieb RA: Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 2006, 281:29776–29787.

    Article  CAS  PubMed  Google Scholar 

  48. Hamacher-Brady A, Brady NR, Logue SE, et al.: Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 2007, 14:146–157.

    Article  CAS  PubMed  Google Scholar 

  49. Valentim L, Laurence KM, Townsend PA, et al.: Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J Mol Cell Cardiol 2006, 40:846–852.

    Article  CAS  PubMed  Google Scholar 

  50. Matsui Y, Takagi H, Qu X, et al.: Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 2007, 100:914–922.

    Article  CAS  PubMed  Google Scholar 

  51. Koike M, Shibata M, Tadakoshi M, et al.: Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 2008, 172:454–469.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph A. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, D.J., Gillette, T.G. & Hill, J.A. Cardiomyocyte autophagy: Remodeling, repairing, and reconstructing the heart. Current Science Inc 11, 406–411 (2009). https://doi.org/10.1007/s11906-009-0070-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-009-0070-1

Keywords

Navigation