Skip to main content

Advertisement

Log in

Seek and destroy: The ubiquitin-proteasome system in cardiac disease

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The ubiquitin-proteasome system (UPS) is a major proteolytic system that regulates the degradation of intracellular proteins in the heart. The UPS regulates the turnover of misfolded and damaged proteins, in addition to numerous cellular processes, by affecting the stability of short-lived proteins such as transcription factors and cell signaling pathways. The UPS is tightly regulated by the specificity of ubiquitin ligases that recognize specific substrates and direct the addition of ubiquitin, targeting the substrates for degradation by the 26S proteasome. An increasing number of cardiac ubiquitin ligases have been identified, and the number of substrates each one is known to recognize also has increased, expanding their roles. Although mainly cardioprotective roles have been attributed to ubiquitin ligases, new studies have identified exceptions to this rule. This review discusses the mechanisms of cardiac ubiquitin ligases and identifies their role in common cardiac diseases including cardiac hypertrophy, cardiac atrophy, ischemic heart disease, and diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wilkinson KD: Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 1997, 11:1245–1256.

    CAS  PubMed  Google Scholar 

  2. Kim HT, Kim KP, Lledias F, et al.: Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 2007, 282:17375–17386.

    Article  CAS  PubMed  Google Scholar 

  3. Kim HT, Kim KP, Uchiki T, et al.: S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. EMBO J 2009, 28:1867–1877.

    Article  CAS  PubMed  Google Scholar 

  4. Leithe E, Rivedal E: Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J Biol Chem 2004, 279:50089–50096.

    Article  CAS  PubMed  Google Scholar 

  5. Leithe E, Rivedal E: Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43. J Cell Sci 2004, 117:1211–1220.

    Article  CAS  PubMed  Google Scholar 

  6. Huang H, Joazeiro CA, Bonfoco E, et al.: The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem 2000, 275:26661–26664.

    CAS  PubMed  Google Scholar 

  7. Jennissen HP, Laub M: Ubiquitin-calmodulin conjugating activity from cardiac muscle. Biol Chem Hoppe Seyler 1988, 369:1325–1330.

    CAS  PubMed  Google Scholar 

  8. Peng J, Schwartz D, Elias JE, et al.: A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003, 21:921–926.

    Article  CAS  PubMed  Google Scholar 

  9. Xu P, Peng J: Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 2006, 1764:1940–1947.

    CAS  PubMed  Google Scholar 

  10. Tenno T, Fujiwara K, Tochio H, et al.: Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 2004, 9:865–875.

    Article  CAS  PubMed  Google Scholar 

  11. Varadan R, Assfalg M, Haririnia A, et al.: Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 2004, 279:7055–7063.

    Article  CAS  PubMed  Google Scholar 

  12. Li HH, Willis MS, Lockyer P, et al.: Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of forkhead proteins. J Clin Invest 2007, 117:3211–3223.

    Article  CAS  PubMed  Google Scholar 

  13. Xie P, Guo S, Fan Y, et al.: Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem 2009, 284:5488–5496.

    Article  CAS  PubMed  Google Scholar 

  14. Willis MS, Schisler JC, Patterson C: Appetite for destruction: E3 ubiquitin-ligase protection in cardiac disease. Future Cardiol 2008, 4:65–75.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang C, Xu Z, He XR, et al.: CHIP, a cochaperone/ubiquitin ligase that regulates protein quality control, is required for maximal cardioprotection after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 2005, 288:H2836–H2842.

    Article  CAS  PubMed  Google Scholar 

  16. Fielitz J, van Rooij E, Spencer JA, et al.: Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci U S A 2007, 104:4377–4382.

    Article  CAS  PubMed  Google Scholar 

  17. Fielitz J, Kim MS, Shelton JM, et al.: Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. J Clin Invest 2007, 117:2486–2495.

    Article  CAS  PubMed  Google Scholar 

  18. Min JN, Whaley RA, Sharpless NE, et al.: CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol Cell Biol 2008, 28:4018–4025.

    Article  CAS  PubMed  Google Scholar 

  19. Willis MS, Schisler JC, Portbury AL, Patterson C: Build it up-Tear it down: protein quality control in the cardiac sarcomere. Cardiovasc Res 2009, 81:439–448.

    Article  CAS  PubMed  Google Scholar 

  20. Arya R, Kedar V, Hwang JR, et al.: Muscle ring finger protein- 1 inhibits PKC{epsilon} activation and prevents cardiomyocyte hypertrophy. J Cell Biol 2004, 167:1147–1159.

    Article  CAS  PubMed  Google Scholar 

  21. Willis MS, Ike C, Li L, et al.: Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 2007, 100:456–459.

    Article  CAS  PubMed  Google Scholar 

  22. Willis MS, Rojas M, Li L, et al.: Muscle ring finger 1 mediates cardiac atrophy in vivo. Am J Physiol Heart Circ Physiol 2009, 296:H997–H1006.

    Article  CAS  PubMed  Google Scholar 

  23. Willis MS, Schisler JC, Li L, et al.: Cardiac muscle ring finger-1 increases susceptibility to heart failure in vivo. Circ Res 2009, 105:80–88.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao TJ, Yan YB, Liu Y, Zhou HM: The generation of the oxidized form of creatine kinase is a negative regulation on muscle creatine kinase. J Biol Chem 2007, 282:12022–12029.

    Article  CAS  PubMed  Google Scholar 

  25. Koyama S, Hata S, Witt CC, et al.: Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 2008, 376:1224–1236.

    Article  CAS  PubMed  Google Scholar 

  26. Witt SH, Granzier H, Witt CC, Labeit S: MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 2005, 350:713–722.

    Article  CAS  PubMed  Google Scholar 

  27. Centner T, Yano J, Kimura E, et al.: Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001, 306:717–726.

    Article  CAS  PubMed  Google Scholar 

  28. Witt CC, Witt SH, Lerche S, et al.: Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO J 2008, 27:350–360.

    Article  CAS  PubMed  Google Scholar 

  29. Kim HD, Kim DJ, Lee IJ, et al.: Human fetal heart development after mid-term: morphometry and ultrastructural study. J Mol Cell Cardiol 1992, 24:949–965.

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Wang X, Capasso JM, Gerdes AM: Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996, 28:1737–1746.

    Article  CAS  PubMed  Google Scholar 

  31. Kolodziejczyk SM, Wang L, Balazsi K, et al.: MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol 1999, 9:1203–1206.

    Article  CAS  PubMed  Google Scholar 

  32. Schisler JC, Willis MS, Patterson C: You spin me round: MaFBx/atrogin-1 feeds forward on FOXO transcription factors (like a record). Cell Cycle 2008, 7:440–443.

    CAS  PubMed  Google Scholar 

  33. Mearini G, Schlossarek S, Willis MS, Carrier L: The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 2008, 1782:749–763.

    CAS  PubMed  Google Scholar 

  34. Balasubramanian S, Mani S, Shiraishi H, et al.: Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J Mol Cell Cardiol 2006, 41(4):669–679.

    Article  CAS  PubMed  Google Scholar 

  35. Razeghi P, Baskin KK, Sharma S, et al.: Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 2006, 342:361–364.

    Article  CAS  PubMed  Google Scholar 

  36. Razeghi P, Sharma S, Ying J, et al.: Atrophic remodeling of the heart in vivo simultaneously activates pathways of protein synthesis and degradation. Circulation 2003, 108:2536–2541.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma S, Ying J, Razeghi P, et al.: Atrophic remodeling of the transplanted rat heart. Cardiology 2006, 105:128–136.

    Article  PubMed  Google Scholar 

  38. Bodine SC, Latres E, Baumhueter S, et al.: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294:1704–1708.

    Article  CAS  PubMed  Google Scholar 

  39. Rubler S, Dlugash J, Yuceoglu YZ, et al.: New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972, 30:595–602.

    Article  CAS  PubMed  Google Scholar 

  40. Spector KS: Diabetic cardiomyopathy. Clin Cardiol 1998, 21:885–887.

    Article  CAS  PubMed  Google Scholar 

  41. Harmancey R, Taegtmeyer H: The complexities of diabetic cardiomyopathy: lessons from patients and animal models. Curr Diab Rep 2008, 8:243–248.

    Article  CAS  PubMed  Google Scholar 

  42. Kobayashi S, Mao K, Zheng H, et al.: Diminished GATA4 protein levels contribute to hyperglycemia-induced cardiomyocyte injury. J Biol Chem 2007, 282:21945–21952.

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Hu Z, Hu J, et al.: Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology 2006, 147:4160–4168.

    Article  CAS  PubMed  Google Scholar 

  44. Hu J, Klein JD, Du J, Wang XH: Cardiac muscle protein catabolism in diabetes mellitus: activation of the ubiquitin-proteasome system by insulin deficiency. Endocrinology 2008, 149:5384–5390.

    Article  CAS  PubMed  Google Scholar 

  45. Powell SR, Samuel SM, Wang P, et al.: Upregulation of myocardial 11S-activated proteasome in experimental hyperglycemia. J Mol Cell Cardiol 2008, 44:618–621.

    Article  CAS  PubMed  Google Scholar 

  46. Whitby FG, Masters EI, Kramer L, et al.: Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115–120.

    Article  CAS  PubMed  Google Scholar 

  47. Depre C, Wang Q, Yan L, et al.: Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 2006, 114:1821–1828.

    Article  CAS  PubMed  Google Scholar 

  48. Merforth S, Kuehn L, Osmers A, Dahlmann B: Alteration of 20S proteasome-subtypes and proteasome activator PA28 in skeletal muscle of rat after induction of diabetes mellitus. Int J Biochem Cell Biol 2003, 35:740–748.

    Article  CAS  PubMed  Google Scholar 

  49. Marfella R, Filippo CD, Portoghese M, et al.: The ubiquitin-proteasome system contributes to the inflammatory injury in ischemic diabetic myocardium: the role of glycemic control. Cardiovasc Pathol 2009 Jan 12 (Epub ahead of print).

  50. Avela K, Lipsanen-Nyman M, Idanheimo N, et al.: Gene encoding a new RING-B-box-Coiled-coil protein is mutated in mulibrey nanism. Nat Genet 2000, 25:298–301.

    Article  CAS  PubMed  Google Scholar 

  51. Lipsanen-Nyman M, Perheentupa J, Rapola J, et al.: Mulibrey heart disease: clinical manifestations, long-term course, and results of pericardiectomy in a series of 49 patients born before 1985. Circulation 2003, 107:2810–2815.

    Article  PubMed  Google Scholar 

  52. Karlberg N, Jalanko H, Kallijarvi J, et al.: Insulin resistance syndrome in subjects with mutated RING finger protein TRIM37. Diabetes 2005, 54:3577–3581.

    Article  CAS  PubMed  Google Scholar 

  53. Kedar V, McDonough H, Arya R, et al.: Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 2004, 101:18135–18140.

    Article  CAS  PubMed  Google Scholar 

  54. Willis MS, Li HH, Rodriguez JE, et al.: MuRF1 inhibits JNK signaling in cardiac ischemia reperfusion injury by degrading phosphorylated cJun [abstract]. FASEB J 2008, 22:751.11.

    Google Scholar 

  55. Lange S, Xiang F, Yakovenko A, et al.: The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005, 308:1599–1603.

    Article  CAS  PubMed  Google Scholar 

  56. Li HH, Kedar V, Zhang C, et al.: Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 2004, 114:1058–1071.

    CAS  PubMed  Google Scholar 

  57. McDonough H, Patterson C: CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 2003, 8:303–308.

    Article  CAS  PubMed  Google Scholar 

  58. Patterson C, Schisler JC (eds): STIP1 homology and U box-containing protein 1 — [Isoform 1]. Targeted Protein Database 2008, DOI 10.2970/tpdb.2008.130.

  59. Xie P, Fan Y, Zhang H, et al.: CHIP represses myocardin-induced smooth muscle cell differentiation via ubiquitin-mediated proteasomal degradation. Mol Cell Biol 2009, 29:2398–2408.

    Article  CAS  PubMed  Google Scholar 

  60. Momand J, Zambetti GP, Olson DC, et al.: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992, 69:1237–1245.

    Article  CAS  PubMed  Google Scholar 

  61. Grier JD, Xiong S, Elizondo-Fraire AC, et al.: Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol Cell Biol 2006, 26:192–198.

    Article  CAS  PubMed  Google Scholar 

  62. Toth A, Nickson P, Qin LL, Erhardt P: Differential regulation of cardiomyocyte survival and hypertrophy by MDM2, an E3 ubiquitin ligase. J Biol Chem 2006, 281:3679–3689.

    Article  CAS  PubMed  Google Scholar 

  63. Foo RS, Chan LK, Kitsis RN, Bennett MR: Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem 2007, 282:5529–5535.

    Article  CAS  PubMed  Google Scholar 

  64. Rosenblatt-Velin N, Lerch R, Papageorgiou I, Montessuit C: Insulin resistance in adult cardiomyocytes undergoing dedifferentiation: role of GLUT4 expression and translocation. FASEB J 2004, 18:872–874.

    CAS  PubMed  Google Scholar 

  65. Rubin C, Gur G, Yarden Y: Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res 2005, 15:66–71.

    Article  CAS  PubMed  Google Scholar 

  66. Kaabeche K, Lemonnier J, Le Mee S, et al.: Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem 2004, 279:36259–36267.

    Article  CAS  PubMed  Google Scholar 

  67. Oda H, Kumar S, Howley PM: Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 1999, 96:9557–9562.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monte S. Willis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríoguez, J.E., Schisler, J.C., Patterson, C. et al. Seek and destroy: The ubiquitin-proteasome system in cardiac disease. Current Science Inc 11, 396–405 (2009). https://doi.org/10.1007/s11906-009-0069-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-009-0069-7

Keywords

Navigation