Skip to main content

Advertisement

Log in

Fat tissue metabolism and adrenal steroid secretion

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Obesity has reached epidemic proportions in Western societies, contributing to metabolic diseases, hypertension, and vascular diseases. White adipose tissue has traditionally been regarded merely as lipid, and consequently, as energy storage. However, recent data revealed the importance of adipose tissue as a highly active endocrine organ and its involvement in the body’s metabolism and homeostasis. Obesity is associated with several endocrine disorders, including adrenocortical malfunction. Because of the central role of adrenal function in the body’s homeostasis, adrenal malfunction is important in the development of other obesity-related abnormalities. Therefore, in this short review, we summarize recent data on obesity-induced changes in adrenocortical mineralocorticoid, glucocorticoid, and androgen secretions and their consequences for metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hedley AA, Ogden CL, Johnson CL, et al.: Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. JAMA 2004, 291:2847–2850.

    Article  PubMed  CAS  Google Scholar 

  2. Kopelman PG: Obesity as a medical problem. Nature 2000, 404:635–643. Comprehensive and critical review on the metabolic and medical problems associated with overweight and obesity.

    PubMed  CAS  Google Scholar 

  3. Kim S, Moustaid-Moussa N: Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 2000, 130:3110S-3115S.

    PubMed  CAS  Google Scholar 

  4. Trayhurn P, Beattie JH: Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001, 60:329–339. The endocrine function of adipose tissue plays a key role in the development of obesity-associated diseases and malfunctions such as adrenal malfunction.

    Article  PubMed  CAS  Google Scholar 

  5. Hauner H: The new concept of adipose tissue function. Physiol Behav 2004, 83:653–658.

    Article  PubMed  CAS  Google Scholar 

  6. Weaver JU, Kopelman PG, McLoughlin L, et al.: Hyperactivity of the hypothalamo-pituitary-adrenal axis in obesity: a study of ACTH, AVP, beta-lipotrophin and cortisol responses to insulin-induced hypoglycaemia. Clin Endocrinol (Oxf) 1993, 39:345–350.

    CAS  Google Scholar 

  7. Rosmond R, Dallman MF, Bjorntorp P: Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J Clin Endocrinol Metab 1998, 83:1853–1859.

    Article  PubMed  CAS  Google Scholar 

  8. Bjorntorp P: Neuroendocrine factors in obesity. J Endocrinol 1997, 155:193–195.

    Article  PubMed  CAS  Google Scholar 

  9. Duclos M, Gatta B, Corcuff JB, et al.: Fat distribution in obese women is associated with subtle alterations of the hypothalamic-pituitary-adrenal axis activity and sensitivity to glucocorticoids. Clin Endocrinol (Oxf) 2001, 55:447–454.

    Article  CAS  Google Scholar 

  10. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, et al.: Intraadrenal interactions in the regulation of adrenocortical steroidogenesis. Endocrinol Rev 1998, 19:101–143.

    Article  CAS  Google Scholar 

  11. Lamounier-Zepter V, Bornstein SR, Ehrhart-Bornstein M: Mechanisms of obesity-related hypertension. Horm Metab Res 2004, 36:376–380.

    Article  PubMed  CAS  Google Scholar 

  12. Stowasser M, Gunasekera TG, Gordon RD: Familial varieties of primary aldosteronism. Clin Exp Pharmacol Physiol 2001, 28:1087–1090.

    Article  PubMed  CAS  Google Scholar 

  13. Thakur V, Richards R, Reisin E: Obesity, hypertension, and the heart. Am J Med Sci 2001, 321:242–248.

    Article  PubMed  CAS  Google Scholar 

  14. Licata G, Scaglione R, Ganguzza A, et al.: Central obesity and hypertension: relationship between fasting serum insulin, plasma renin activity, and diastolic blood pressure in young obese subjects. Am J Hypertens 1994, 7:314–320.

    PubMed  CAS  Google Scholar 

  15. Egan BM, Stepniakowski K, Goodfriend TL: Renin and aldosterone are higher and the hyperinsulinemic effect of salt restriction greater in subjects with risk factors clustering. Am J Hypertens 1994, 7:886–893.

    PubMed  CAS  Google Scholar 

  16. El Gharbawy AH, Nadig VS, Kotchen JM, et al.: Arterial pressure, left ventricular mass, and aldosterone in essential hypertension. Hypertension 2001, 37:845–850.

    Google Scholar 

  17. Goodfriend TL, Calhoun DA: Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 2004, 43:518–524.

    Article  PubMed  CAS  Google Scholar 

  18. de PaulaRB, da Silva AA, Hall JE: Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension 2004, 43:41–47.

    Article  PubMed  CAS  Google Scholar 

  19. Engeli S, Sharma AM: The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J Mol Med 2001, 79:21–29.

    Article  PubMed  CAS  Google Scholar 

  20. Engeli S, Schling P, Gorzelniak K, et al.: The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 2003, 35:807–825.

    Article  PubMed  CAS  Google Scholar 

  21. Frederich RC Jr, Kahn BB, Peach MJ, et al.: Tissue-specific nutritional regulation of angiotensinogen in adipose tissue. Hypertension 1992, 19:339–344.

    PubMed  CAS  Google Scholar 

  22. Prat-Larquemin L, Oppert JM, Clement K, et al.: Adipose angiotensinogen secretion, blood pressure, and AGT M235T polymorphism in obese patients. Obes Res 2004, 12:556–561.

    PubMed  CAS  Google Scholar 

  23. Engeli S, Bohnke J, Gorzelniak K, et al.: Weight loss and the renin-angiotensin-aldosterone system. Hypertension 2005, 45:356–362.

    Article  PubMed  CAS  Google Scholar 

  24. Harte A, McTernan P, Chetty R, et al.: Insulin-mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 2005, 111:1954–1961.

    Article  PubMed  CAS  Google Scholar 

  25. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, et al.: Human adipocytes secrete mineralocorticoid releasing factors. Proc Nat Acad Sci U S A 2003, 100:14211–14216.

    Article  CAS  Google Scholar 

  26. Ehrhart-Bornstein M, Arakelyan K, Krug AW, et al.: Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocrinol Res 2004, 30:865–870.

    Article  CAS  Google Scholar 

  27. Glasow A, Haidan A, Hilbers U, et al.: Expression of ob receptor in normal human adrenal: differential regulation of adrenocortical and adrenomedullary function by leptin. J Clin Endocrinol Metab 1998, 83:4459–4466.

    Article  PubMed  CAS  Google Scholar 

  28. Goodfriend TL, Ball DL, Egan BM, et al.: Epoxy-keto derivative of linoleic acid stimulates aldosterone secretion. Hypertension 2004, 43:358–363.

    Article  PubMed  CAS  Google Scholar 

  29. Purnell JQ, Brandon DD, Isabelle LM, et al.: Association of 24-hour cortisol production rates, cortisol-binding globulin, and plasma-free cortisol levels with body composition, leptin levels, and aging in adult men and women. J Clin Endocrinol Metab 2004, 89:281–287.

    Article  PubMed  CAS  Google Scholar 

  30. Andrew R, Phillips DI, Walker BR: Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998, 83:1806–1809.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Proenca R, Maffei M, et al.: Positional cloning the mouse obese gene and its human homologue. Nature 1994, 372:425–432.

    Article  PubMed  CAS  Google Scholar 

  32. Heiman ML, Ahima RS, Craft LS, et al.: Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology 1997, 138:3859–3863.

    Article  PubMed  CAS  Google Scholar 

  33. Stephens TW, Basinski M, Bristow PK, et al.: The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature 1995, 377:530–532.

    Article  PubMed  CAS  Google Scholar 

  34. Pralong FP, Roduit R, Waeber G, et al.: Leptin inhibits directly glucocorticoid secretion by normal human and rat adrenal gland. Endocrinology 1998, 139:4264–4268.

    Article  PubMed  CAS  Google Scholar 

  35. Bornstein SR, Uhlmann K, Haidan A, et al.: Evidence for a novel peripheral action of leptin as a metabolic signal to the adrenal gland. Leptin inhibits cortisol release directly. Diabetes 1997, 46:1235–1238.

    Article  PubMed  CAS  Google Scholar 

  36. Kruse M, Bornstein SR, Uhlmann K, et al.: Leptin downregulates the steroid producing system in the adrenal. Endocriunol Res 1998, 24:587–590.

    Article  CAS  Google Scholar 

  37. Lado-Abeal J, Mrotek JJ, Stocco DM, et al.: Effect of leptin on ACTH-stimulated secretion of cortisol in rhesus macaques and on human adrenal carcinoma cells. Eur J Endocrinol 1999, 141:534–538.

    Article  PubMed  CAS  Google Scholar 

  38. Ahima RS, Prabakaran D, Mantzoros C, et al.: Role of leptin in the neuroendocrine response to fasting. Nature 1996, 382:250–252.

    Article  PubMed  CAS  Google Scholar 

  39. L’Allemand D, Schmidt S, Rousson V, et al.: Associations between body mass, leptin, IGF-I and circulating adrenal androgens in children with obesity and premature adrenarche. Eur J Endocrinol 2002, 146:537–543.

    Article  PubMed  CAS  Google Scholar 

  40. Remer T, Manz F: Role of nutritional status in the regulation of adrenarche. J Clin Endocrinol Metab 1999, 84:3936–3944.

    Article  PubMed  CAS  Google Scholar 

  41. Quinton ND, Smith RF, Clayton PE, et al.: Leptin binding activity changes with age: the link between leptin and puberty. J Clin Endocrinol Metab 1999, 84:2336–2341.

    Article  PubMed  CAS  Google Scholar 

  42. Blum WF, Englaro P, Hanitsch S, et al.: Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab 1997, 82:2904–2910.

    Article  PubMed  CAS  Google Scholar 

  43. Mantzoros CS, Flier JS, Rogol AD: A longitudinal assessment of hormonal and physical alterations during normal puberty in boys. V. Rising leptin levels may signal the onset of puberty. J Clin Endocrinol Metab 1997, 82:1066–1070.

    Article  PubMed  CAS  Google Scholar 

  44. Ahima RS, Dushay J, Flier SN, et al.: Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 1997, 99:391–395.

    Article  PubMed  CAS  Google Scholar 

  45. Chehab FF, Mounzih K, Lu R, et al.: Early onset of reproductive function in normal female mice treated with leptin. Science 1997, 275:88–90.

    Article  PubMed  CAS  Google Scholar 

  46. Ghizzoni L, Mastorakos G: Interactions of leptin, GH, and cortisol in normal children. Ann N Y Acad Sci 2003, 997:56–63.

    Article  PubMed  CAS  Google Scholar 

  47. Biason-Lauber A, Zachmann M, Schoenle EJ: Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology 2000, 141:1446–1454.

    Article  PubMed  CAS  Google Scholar 

  48. MacCario M, Mazza E, Ramunni J, et al.: Relationships between dehydroepiandrosterone-sulphate and anthropometric, metabolic and hormonal variables in a large cohort of obese women. Clin Endocrinol (Oxf) 1999, 50:595–600.

    Article  CAS  Google Scholar 

  49. De PG, Giagulli VA, Garruti G, et al.: Low dehydroepiandrosterone circulating levels in premenopausal obese women with very high body mass index. Metabolism 1991, 40:187–190.

    Article  Google Scholar 

  50. Tchernof A, Despres JP, Belanger A, et al.: Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism 1995, 44:513–519.

    Article  PubMed  CAS  Google Scholar 

  51. Hauner H, Entenmann G, Wabisch M, et al.: Promoting effects of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 1989, 84:1663–1670.

    PubMed  CAS  Google Scholar 

  52. Vrezas I, Wentworth P, Bornstein SR: Myelolipomatous foci on an adrenal adenoma causing Cushing’s syndrome. Endocrinol Res 2003, 29:67–71.

    Article  Google Scholar 

  53. Päth G, Bornstein SR, Ehrhart-Bornstein M, et al.: Interleukin-6 and the interleukin-6 receptor in the human adrenal gland: expression and effects on steroidogenesis. J Clin Endocrinol Metab 1997, 82:2343–2349.

    Article  PubMed  Google Scholar 

  54. Natarajan R, Ploszaj S, Horton R, et al.: Tumor necrosis factor and interleukin-1 are potent inhibitors of angiotensin II-induced aldosterone synthesis. Endocrinology 1989, 125:3084–3089.

    Article  PubMed  CAS  Google Scholar 

  55. Judd AM, Call GB, Barney M, et al.: Possible function of IL-6 and TNF as intraadrenal factors in the regulation of adrenal steroid secretion. Ann N Y Acad Sci 2000, 917:628–637.

    Article  PubMed  CAS  Google Scholar 

  56. McGarry JD: Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002, 51:7–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Ehrhart-Bornstein PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamounier-Zepter, V., Ehrhart-Bornstein, M. Fat tissue metabolism and adrenal steroid secretion. Current Science Inc 8, 30–34 (2006). https://doi.org/10.1007/s11906-006-0038-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0038-3

Keywords

Navigation