Skip to main content

Advertisement

Log in

Obesity and insulin resistance: Effects on cardiac structure, function, and substrate metabolism

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

It is widely recognized that obesity and insulin resistance can contribute to an increased risk of coronary disease, but it has also become increasingly apparent that they may contribute directly to cardiac dysfunction even in the absence of significant coronary disease. Recently, obesity, which is frequently accompanied by insulin resistance, has been independently related to clinically diagnosed heart failure. Thus, there is renewed interest in the pathophysiology of myocardial disease related to obesity and insulin resistance, as well as in the specific cellular mechanisms by which obesity may cause detrimental cardiac structural and functional changes. Alterations in hemodynamics, plasma volume, neurohormonal status, and myocardial substrate metabolism all appear to contribute to these changes. Improving our understanding of cardiac dysfunction related to obesity and insulin resistance may provide clues for new strategies to prevent and treat this alarmingly prevalent condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Yach D, Stuckler D, Brownell KD: Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006, 12:62–66.

    Article  PubMed  CAS  Google Scholar 

  2. Zimmet P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 2001, 414:782–787.

    Article  PubMed  CAS  Google Scholar 

  3. Kenchaiah S, Evans JC, Levy D, et al.: Obesity and the risk of heart failure. N Engl J Med 2002, 347:305–313.

    Article  PubMed  Google Scholar 

  4. Kannel WB, Hjortland M, Castelli WP: Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974, 34:29–34.

    Article  PubMed  CAS  Google Scholar 

  5. Hamby R, Zoneraich S, Sherman L: Diabetic cardiomyopathy. JAMA 1974, 229:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  6. Rodrigues B, McNeill JH: The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res 1992, 26:913–922.

    PubMed  CAS  Google Scholar 

  7. Finck BN, Han X, Courtois M, et al.: A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 2003, 100:1226–1231.

    Article  PubMed  CAS  Google Scholar 

  8. Messerli FH, Sundgaard-Riise K, Reisin E, et al.: Disparate cardiovascular effects of obesity and arterial hypertension. Am J Med 1983, 74:808–812.

    Article  PubMed  CAS  Google Scholar 

  9. Alpert MA: Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci 2001, 321:225–236.

    Article  PubMed  CAS  Google Scholar 

  10. Peterson LR, Waggoner AD, Schechtman KB, et al.: Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J Am Coll Cardiol 2004, 43:1399–1404. This study demonstrated that concentric remodeling and diastolic and systolic dysfunction are predicted by increasing BMI.

    Article  PubMed  Google Scholar 

  11. Mensah GA, Treiber FA, Kapuku GK, et al.: Patterns of body fat deposition in youth and their relation to left ventricular markers of adverse cardiovascular prognosis. Am J Cardiol 1999, 84:583–588.

    Article  PubMed  CAS  Google Scholar 

  12. Ganau A, Devereux RB, Roman MJ, et al.: Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 1992, 19:1550–1558.

    Article  PubMed  CAS  Google Scholar 

  13. Alpert MA, Lambert CR, Panayiotou H, et al.: Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol 1995, 76:1194–1197.

    Article  PubMed  CAS  Google Scholar 

  14. Wong CY, O’Moore-Sullivan T, Leano R, et al.: Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 2004, 110:3081–3087. In this article, myocardial texture and LV load-independent measures of diastolic function were abnormal in obese subjects compared with controls.

    Article  PubMed  Google Scholar 

  15. Ahmed Q, Chung-Park M, Tomashefski JF Jr: Cardiopulmonary pathology in patients with sleep apnea/obesity hypoventilation syndrome. Hum Pathol 1997, 28:264 -269.

    Article  PubMed  CAS  Google Scholar 

  16. Gates PE, Gentile CL, Seals DR, Christou DD: Adiposity contributes to differences in left ventricular structure and diastolic function with age in healthy men. J Clin Endocrinol Metab 2003, 88:4884–4890.

    Article  PubMed  CAS  Google Scholar 

  17. Carabello BA, Gittens L: Cardiac mechanics and function in obese normotensive persons with normal coronary arteries. Am J Cardiol 1987, 59:469–473.

    Article  PubMed  CAS  Google Scholar 

  18. Palmieri V, de Simone G, Arnett DK, et al.: Relation of various degrees of body mass index in patients with systemic hypertension to left ventricular mass, cardiac output, and peripheral resistance (The Hypertension Genetic Epidemiology Network Study). Am J Cardiol 2001, 88:1163–1168.

    Article  PubMed  CAS  Google Scholar 

  19. Collis T, Devereux RB, Roman MJ, et al.: Relations of stroke volume and cardiac output to body composition: the strong heart study. Circulation 2001, 103:820–825.

    PubMed  CAS  Google Scholar 

  20. Belke DD, Betuing S, Tuttle MJ, et al.: Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 2002, 109:629–639.

    Article  PubMed  CAS  Google Scholar 

  21. Shiojima I, Yefremashvili M, Luo Z, et al.: Akt signaling mediates postnatal heart growth in response to insulin and nutritional status. J Biol Chem 2002, 277:37670–37677.

    Article  PubMed  CAS  Google Scholar 

  22. Sasson Z, Rasooly Y, Bhesania T, Rasooly I: Insulin resistance is an important determinant of left ventricular mass in the obese. Circulation 1993, 88(4 Pt 1):1431–1436.

    PubMed  CAS  Google Scholar 

  23. Vaccaro O, Cardoni O, Cuomo V, et al.: Relationship between plasma insulin and left ventricular mass in normotensive participants of the Gubbio Study. Clin Endocrinol (Oxf) 2003, 58:316–322.

    Article  CAS  Google Scholar 

  24. Liao Y, Takashima S, Maeda N, et al.: Exacerbation of heart failure in adiponectin-deficient mice due to impaired regulation of AMPK and glucose metabolism. Cardiovasc Res 2005, 67:705–713.

    Article  PubMed  CAS  Google Scholar 

  25. Ingelsson E, Riserus U, Berne C, et al.: Adiponectin and risk of congestive heart failure. JAMA 2006, 295:1772–1774.

    Article  PubMed  CAS  Google Scholar 

  26. Cassis LA, Fettinger MJ, Roe AL, et al.: Characterization and regulation of angiotensin II receptors in rat adipose tissue. Angiotensin receptors in adipose tissue. Adv Exp Med Biol 1996, 396:39–47.

    PubMed  CAS  Google Scholar 

  27. Cassis LA, Saye J, Peach MJ: Location and regulation of rat angiotensinogen messenger RNA. Hypertension 1988, 11:591–596.

    PubMed  CAS  Google Scholar 

  28. Davy KP: The global epidemic of obesity: are we becoming more sympathetic? Curr Hypertens Rep 2004, 6:241–246.

    PubMed  Google Scholar 

  29. Peterson LR, Herrero P, Schechtman KB, et al.: Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004, 109:2191–2196. this study, young obese women had increased myocardial oxygen consumption and decreased myocardial efficiency. Insulin resistance predicted myocardial FFA uptake, utilization, and oxidation.

    Article  PubMed  Google Scholar 

  30. Zhou YT, Grayburn P, Karim A, et al.: Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A 2000, 97:1784 -1789.

    Article  PubMed  CAS  Google Scholar 

  31. Aasum E, Hafstad AD, Severson DL, Larsen TS: Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 2003, 52:434–441.

    Article  PubMed  CAS  Google Scholar 

  32. Knuuti J, Takala TO, Nagren K, et al.: Myocardial fatty acid oxidation in patients with impaired glucose tolerance. Diabetologia 2001, 44:184–187.

    Article  PubMed  CAS  Google Scholar 

  33. Turpeinen AK, Takala TO, Nuutila P, et al.: Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance: studies with PET and 14(R,S)-[18F].uoro-6-thia-heptadecanoic acid. Diabetes 1999, 48:1245–1250.

    Article  PubMed  CAS  Google Scholar 

  34. Turpeinen AK, Kuikka JT, Vanninen E, Uusitupa MI: Abnormal myocardial kinetics of 123I-heptadecanoic acid in subjects with impaired glucose tolerance. Diabetologia 1997, 40:541–549.

    Article  PubMed  CAS  Google Scholar 

  35. Chiu HC, Kovacs A, Ford DA, et al.: A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001, 107:813–822.

    PubMed  CAS  Google Scholar 

  36. Listenberger LL, Han X, Lewis SE, et al.: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003, 100:3077–3082.

    Article  PubMed  CAS  Google Scholar 

  37. Blendea MC, Jacobs D, Stump CS, et al.: Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab 2005, 288:E353-E359.

    Article  PubMed  CAS  Google Scholar 

  38. Chiu HC, Kovacs A, Blanton RM, et al.: Transgenic expression of fatty acid transport protein 1 in the heart causes lipotoxic cardiomyopathy. Circ Res 2005, 96:225–233. s study of a murine model of excessive myocardial FFA uptake demonstrated decreased LV function in the absence of apoptosis.

    Article  PubMed  CAS  Google Scholar 

  39. Lee Y, Naseem RH, Park BH, et al.: Alpha-lipoic acid prevents lipotoxic cardiomyopathy in acyl CoA-synthase transgenic mice. Biochem Biophys Res Commun 2006, 344:446–452.

    Article  PubMed  CAS  Google Scholar 

  40. Alpert MA, Terry BE, Mulekar M, et al.: Cardiac morphology and left ventricular function in normotensive morbidly obese patients with and without congestive heart failure, and effect of weight loss. Am J Cardiol 1997, 80:736–740.

    Article  PubMed  CAS  Google Scholar 

  41. Karason K, Wallentin I, Larsson B, Sjostrom L: Effects of obesity and weight loss on cardiac function and valvular performance. Obes Res 1998, 6:422–429.

    PubMed  CAS  Google Scholar 

  42. Kanoupakis E, Michaloudis D, Fraidakis O, et al.: Left ventricular function and cardiopulmonary performance following surgical treatment of morbid obesity. Obes Surg 2001, 11:552–558.

    Article  PubMed  CAS  Google Scholar 

  43. Himeno E, Nishino K, Okazaki T, et al.: A weight reduction and weight maintenance program with long-lasting improvement in left ventricular mass and blood pressure. Am J Hypertens 1999, 12:682–690.

    Article  PubMed  CAS  Google Scholar 

  44. Harp JB, Henry SA, DiGirolamo M: Dietary weight loss decreases serum angiotensin-converting enzyme activity in obese adults. Obes Res 2002, 10:985–990.

    Article  PubMed  CAS  Google Scholar 

  45. Willens HJ, Chakko SC, Byers P, et al.: Effects of weight loss after gastric bypass on right and left ventricular function assessed by tissue Doppler imaging. Am J Cardiol 2005, 95:1521–1524.

    Article  PubMed  Google Scholar 

  46. Peterson LR, Mohammed BS, Avidan M, et al.: Moderate weight loss decreases myocardial oxygen consumption and cardiac work in obese men and women [abstract]. J Am Coll Cardiol 2006, 47:105A.

    Google Scholar 

  47. Backman L, Freyschuss U, Hallberg D, Melcher A: Cardiovascular function in extreme obesity. Acta Med Scand 1973, 193:437–446.

    Article  PubMed  CAS  Google Scholar 

  48. Backman L, Freyschuss U, Hallberg D, Melcher A: Reversibility of cardiovascular changes in extreme obesity. Effects of weight reduction through jejunoileostomy. Acta Med Scand 1979, 205:367–373.

    Article  PubMed  CAS  Google Scholar 

  49. Hallsten K, Virtanen KA, Lonnqvist F, et al.: Enhancement of insulin-stimulated myocardial glucose uptake in patients with type 2 diabetes treated with rosiglitazone. Diabet Med 2004, 21:1280–1287.

    Article  PubMed  CAS  Google Scholar 

  50. Randle PJ, Newsholme EA, Garland PB: Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J 1964, 93:652–665.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda R. Peterson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterson, L.R. Obesity and insulin resistance: Effects on cardiac structure, function, and substrate metabolism. Current Science Inc 8, 451–456 (2006). https://doi.org/10.1007/s11906-006-0022-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0022-y

Keywords

Navigation