Skip to main content

Advertisement

Log in

Hyperfiltration, nitric oxide, and diabetic nephropathy

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Early diabetes is often accompanied by an increased glomerular filtration rate (GFR). This hyperfiltration, which is significantly dependent upon increased nitric oxide activity, is believed to contribute to progression of diabetic nephropathy. In this article, a technique for the measurement of tubular fluid nitric oxide in vivo, in real time, is reviewed, and findings in three commonly used rodent models of diabetes are described. The mechanisms of altered tubuloglomerular feedback (TGF) in diabetes are also reviewed, with emphasis on hyperfiltration and the role of nitric oxide. New findings on the modulation of hyperfiltration in the classic type 2 diabetes db/db mouse are presented, showing suppression of the TGF mechanism and modulation of single-nephron GFR by a specific nitric oxide synthase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. The Diabetes Control and Complications Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993, 329:977–986.

    Article  Google Scholar 

  2. Vallon V, Blantz R, Thomson S: The salt paradox and its possible implications in managing hypertensive diabetic patients. Curr Hypertens Rep 2005, 7:141–147. Intriguing findings relating hyperfiltration to dietary salt in the STZ rat model of type 1 diabetes.

    PubMed  CAS  Google Scholar 

  3. Zatz R, Dunn BR, Meyer TW, et al.: Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986, 77:1925–1930.

    PubMed  CAS  Google Scholar 

  4. Anderson S, Brenner BM: Role of altered capillary hemodynamics in the initiation and progression of diabetic microangiopathy. J Diabet Complications 1988, 2:59–61.

    Article  PubMed  CAS  Google Scholar 

  5. Brenner BM: Retarding the progression of renal disease. Kidney Int 2003, 64:370–378.

    Article  PubMed  Google Scholar 

  6. Fliser D, Wagner KK, Loos A, et al.: Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol 2005, 16:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  7. Whiteside CI: Cellular mechanisms and treatment of diabetes vascular complications converge on reactive oxygen species. Curr Hypertens Rep 2005, 7:148–154. A recent review of factors other than hyperfiltration that likely foster the progression of diabetic nephropathy.

    PubMed  CAS  Google Scholar 

  8. Persson AE, Gutierrez A, Pittner J, et al.: Renal NO production and the development of hypertension. Acta Physiol Scand 2000, 168:169–174.

    Article  PubMed  CAS  Google Scholar 

  9. Levine DZ, Iacovitti M, Burns KD, Zhang X: Real-time profiling of kidney tubular fluid nitric oxide concentrations in vivo. Am J Physiol Renal Physiol 2001, 281:F189-F194. A detailed description of the NO electrode structure, and real time in vivo records.

    PubMed  CAS  Google Scholar 

  10. Komers R, Anderson S: Paradoxes of nitric oxide in the diabetic kidney. Am J Physiol Renal Physiol 2003, 284:F1121-F1137. A detailed superb review of the many facets of nitric oxide metabolism and the diabetic kidney, describing key studies and unresolved issues.

    PubMed  CAS  Google Scholar 

  11. Majid DS, Omoro SA, Chin SY, Navar LG: Intrarenal nitric oxide activity and pressure natriuresis in anesthetized dogs. Hypertension 1998, 32:266–272.

    PubMed  CAS  Google Scholar 

  12. Noiri E, Peresleni T, Miller F, Goligorsky MS: In vivo targeting of inducible NO synthase with oligodeoxynucleotides protects rat kidney against ischemia. J Clin Invest 1996, 97:2377–2383.

    PubMed  CAS  Google Scholar 

  13. Levine DZ, Iacovitti M: Real time microelectrode measurement of nitric oxide in kidney tubular fluid in vivo. Sensors 2003, 3:314–320. A follow-up to Levine et al. [9••] describing advances in electrode technique.

    Article  CAS  Google Scholar 

  14. Levine DZ, Burns KD, Jaffey J, Iacovitti M: Short-term modulation of distal tubule fluid nitric oxide in vivo by loop NaCl reabsorption. Kidney Int 2004, 65:184–189.

    Article  PubMed  CAS  Google Scholar 

  15. Levine DZ, Iacovitti M, Robertson SJ, Mokhtar GA: Modulation of single nephron GFR in the db/db mouse model of type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol 2005, In press. First SNGFR data in a mouse model of diabetes.

  16. Levine DZ, Iacovitti M: Real time measurement of kidney tubule fluid nitric oxide concentrations in early diabetes: disparate changes in different rodent models. Nitric Oxide 2006, In press.

  17. Wilcox C: L-Arginine-Nitric Oxide Pathway, edn 3. Philadelphia: Lippincott Williams & Wilkins; 2000. A comprehensive chapter on the many facets of nitric oxide in the kidney.

    Google Scholar 

  18. Lancaster JR Jr: A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1997, 1:18–30.

    Article  PubMed  CAS  Google Scholar 

  19. Kovacs G, Komlosi P, Fuson A, et al.: Neuronal nitric oxide synthase: its role and regulation in macula densa cells. J Am Soc Nephrol 2003, 14:2475–2483. Demonstration by fluorescent imaging techniques of nitric oxide within macula densa cells, and even in the juxtaglomerular interstitium.

    Article  PubMed  CAS  Google Scholar 

  20. Wendt T, Tanji N, Guo J, et al.: Glucose, glycation, and RAGE: implications for amplification of cellular dysfunction in diabetic nephropathy. J Am Soc Nephrol 2003, 14:1383–1395.

    Article  PubMed  CAS  Google Scholar 

  21. Kawaguchi M, Koshimura K, Sohmiya M, et al.: Effect of insulin on nitric oxide synthase-like immunostaining of arteries in various organs in Zucker diabetic fatty rats. Eur J Endocrinol 2001, 145:343–349.

    Article  PubMed  CAS  Google Scholar 

  22. Wilcox CS, Welch WJ, Murad F, et al.: Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci U S A 1992, 89:11993–11997.

    Article  PubMed  CAS  Google Scholar 

  23. Liu R, Persson AE: Angiotensin II stimulates calcium and nitric oxide release from macula densa cells through AT1 receptors. Hypertension 2004, 43:649–653.

    Article  PubMed  CAS  Google Scholar 

  24. Ito A, Uriu K, Inada Y, et al.: Inhibition of neuronal nitric oxide synthase ameliorates renal hyperfiltration in streptozotocin-induced diabetic rat. J Lab Clin Med 2001, 138:177–185.

    Article  PubMed  CAS  Google Scholar 

  25. Lubec B, Hermon M, Hoeger H, Lubec G: Aromatic hydroxylation in animal models of diabetes mellitus. FASEB J 1998, 12:1581–1587.

    PubMed  CAS  Google Scholar 

  26. Palm F, Ortsater H, Hansell P, et al.: Differentiating between effects of streptozotocin per se and subsequent hyperglycemia on renal function and metabolism in the streptozotocin-diabetic rat model. Diabetes Metab Res Rev 2004, 20:452–459.

    Article  PubMed  Google Scholar 

  27. Sharma K, McCue P, Dunn SR: Diabetic kidney disease in the db/db mouse. American Journal of Physiology — Renal Fluid & Electrolyte Physiology 2003, 284:F1138-F1144. A definitive review of studies on GFR and diabetic nephropathy in the classic db/db mouse model.

    CAS  Google Scholar 

  28. Schnyder B, Pittet M, Durand J, Schnyder-Candrian S: Rapid effects of glucose on the insulin signaling of endothelial NO generation and epithelial Na transport. Am J Physiol Endocrinol Metab 2002, 282:E87-E94.

    PubMed  CAS  Google Scholar 

  29. Thomson SC, Deng A, Bao D, et al.: Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes. J Clin Invest 2001, 107:217–224. In the STZ type 1 diabetic rat, a definitive description of enhanced proximal tubular reabsorption, its mechanisms, and how hyper-filtration can be sustained despite the tubuloglomerular feedback control system.

    Article  PubMed  CAS  Google Scholar 

  30. Vallon V, Traynor T, Barajas L, et al.: Feedback control of glomerular vascular tone in neuronal nitric oxide synthase knockout mice. J Am Soc Nephrol 2001, 12:1599–1606. A key knock-out mouse study establishing a role for nNOS activity in the TGF control mechanism.

    PubMed  CAS  Google Scholar 

  31. Vallon V, Richter K, Blantz RC, et al.: Glomerular hyper-filtration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol 1999, 10:2569–2576.

    PubMed  CAS  Google Scholar 

  32. Vallon V, Blantz RC, Thomson S: Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am J Physiol 1995, 269:F876-F883.

    PubMed  CAS  Google Scholar 

  33. Blantz RC, Peterson OW, Gushwa L, Tucker BJ: Effect of modest hyperglycemia on tubuloglomerular feedback activity. Kidney Int Suppl 1982, 12:S206-S212.

    PubMed  CAS  Google Scholar 

  34. Woods LL, Mizelle HL, Hall JE: Control of renal hemodynamics in hyperglycemia: possible role of tubuloglomerular feedback. Am J Physiol 1987, 252:F65-F73.

    PubMed  CAS  Google Scholar 

  35. Thomson SC, Vallon V, Blantz RC: Kidney function in early diabetes: the tubular hypothesis of glomerular filtration. Am J Physiol Renal Physiol 2004, 286:F8-F15.

    Article  PubMed  CAS  Google Scholar 

  36. Komers R, Lindsley JN, Oyama TT, et al.: Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Am J Physiol Renal Physiol 2000, 279:F573-F583. Demonstration of nNOS activity in the diabetic rat and implications for hyperfiltration.

    PubMed  CAS  Google Scholar 

  37. Komers R, Oyama TT, Chapman JG, et al.: Effects of systemic inhibition of neuronal nitric oxide synthase in diabetic rats. Hypertension 2000, 35:655–661.

    PubMed  CAS  Google Scholar 

  38. Persson AE, Schnermann J, Wright FS: Modification of feedback influence on glomerular filtration rate by acute isotonic extracellular volume expansion. Pflugers Arch 1979, 381:99–105.

    Article  PubMed  CAS  Google Scholar 

  39. Moore LC, Mason J: Tubuloglomerular feedback control of distal fluid delivery: effect of extracellular volume. Am J Physiol 1986, 250:F1024-F1032.

    PubMed  CAS  Google Scholar 

  40. Thomson SC, Blantz RC: Homeostatic efficiency of tubuloglomerular feedback in hydropenia, euvolemia, and acute volume expansion. Am J Physiol 1993, 264:F930-F936.

    PubMed  CAS  Google Scholar 

  41. Brannstrom K, Arendshorst WJ: Resetting of exaggerated tubuloglomerular feedback activity in acutely volumeexpanded young SHR. Am J Physiol 1999, 276:F409-F416.

    PubMed  CAS  Google Scholar 

  42. Brown R, Ollerstam A, Persson AE: Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion. Kidney Int 2004, 65:1349–1356.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z. Levine MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, D.Z. Hyperfiltration, nitric oxide, and diabetic nephropathy. Current Science Inc 8, 153–157 (2006). https://doi.org/10.1007/s11906-006-0012-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0012-0

Keywords

Navigation