Skip to main content

Advertisement

Log in

The role of RAS in the pathogenesis of preeclampsia

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Preeclampsia is a hypertensive disorder that is unique to pregnancy, with consistent involvement of the kidney. The renin-angiotensin system (RAS) has been implicated in the pathogenesis of preeclampsia. In the gravid state, in addition to the RAS in the kidney, there is a tissue-based RAS in the uteroplacental unit. Increased renin expression in human preeclampsia and in transgenic mouse models with a human preeclampsia-like syndrome shows that activation of the uteroplacental RAS, with angiotensin II entering the systemic circulation, may mediate the pathogenesis of preeclampsia. Vascular maladaptation in preeclampsia with increased vasomotor tone, endothelial dysfunction, and increased sensitivity to angiotensin II and norepinephrine in manifest preeclampsia may be explained on the basis of angiotensin II-mediated mechanisms through angiotensin receptor type I (AT1) activation. Recently, novel angiotensin II-related biomolecular mechanisms have been described in preeclampsia. These include AT1 and bradykinin B2 receptor heterodimerization and the production of autoantibody against AT1. Various organ systems with predilection for involvement in preeclampsia are sites of tissue-based RAS. Angiotensin II-mediated mechanisms may explain the primary clinicopathologic features of preeclampsia. In this review, these various aspects are critically examined and an integrated concept on the role of RAS in preeclampsia is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Morgan T, Craven C, Lalouel JM, Ward K: Angiotensinogen Thr235 variant is associated with abnormal physiologic change of the uterine spiral arteries in first-trimester decidua. Am J Obstet Gynecol 1999, 180:95–102.

    Article  PubMed  CAS  Google Scholar 

  2. Zoumakis E, Margioris AN, Stournaras C, et al.: Corticotrophin-releasing hormone (CRH) interacts with inflammatory prostaglandins and interleukins and affects the decidualization of human endometrial stroma. Mol Hum Reprod 2000, 6:344–351.

    Article  PubMed  CAS  Google Scholar 

  3. Nielsen AH, Schauser KH, Poulsen K: Current topic: the uteroplacental renin-angiotensin system. Placenta 2000, 21:468–477.

    Article  PubMed  CAS  Google Scholar 

  4. Agarwal M, Lynn KL, Richards AM, Nicholls MG: Hyponatremic-hypertensive syndrome with renal ischemia: an underrecognized disorder. Hypertension 1999, 33:1020–1024.

    PubMed  CAS  Google Scholar 

  5. Symonds EM: Renin and reproduction. Am J Obstet Gynecol 1988, 158:754–761.

    PubMed  CAS  Google Scholar 

  6. Brosens I, Dixon HG: The anatomy of the maternal side of the placenta. J Obstet Gynaecol Br Commonw 1966, 73:357–363.

    PubMed  CAS  Google Scholar 

  7. Ramsey E, Harris JWS: Comparison of uteroplacental vasculature and circulation in rhesus monkey and man. Contrib Embryol Carnegie Inst Wash 1966, 38:59.

    Google Scholar 

  8. Symonds EM, Stanley MA, Skinner SL: Production of renin by in vitro cultures of human chorion and uterine muscle. Nature 1968, 217:1152–1153.

    Article  PubMed  CAS  Google Scholar 

  9. Ihara Y, Taii S, Mori T: Expression of renin and angiotensinogen genes in the human placental tissues. Endocrinol Jpn 1987, 34:887–896.

    PubMed  CAS  Google Scholar 

  10. Li C, Yu Z, Shah DM: Authenticity and cellular localization of prorenin in human placenta (abstract). J Soc Gynecol Investig 2001, 8(Suppl1):207A.

    Google Scholar 

  11. Li X, Shams M, Zhu J, et al.: Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J Clin Invest 1998, 101:442–454.

    PubMed  CAS  Google Scholar 

  12. Hariyama Y, Itakura A, Okamura M, et al.: Placental aminopeptidase A as a possible barrier of angiotensin II between mother and fetus. Placenta 2000, 21:621–627.

    Article  PubMed  CAS  Google Scholar 

  13. Ito M, Itakura A, Ohno Y, et al.: Possible activation of the renin-angiotensin system in the feto-placental unit in preeclampsia. J Clin Endocrinol Metab 2002, 87:1871–1878.

    Article  PubMed  CAS  Google Scholar 

  14. Shaw KJ, Do YS, Kjos S, et al.: Human decidua is a major source of renin. J Clin Invest 1989, 83:2085–2092.

    PubMed  CAS  Google Scholar 

  15. Morgan T, Craven C, Ward K: Human spiral artery reninangiotensin system. Hypertension 1998, 32:683–687.

    PubMed  CAS  Google Scholar 

  16. Li C, Ansari R, Yu Z, Shah D: Definitive molecular evidence of renin-angiotensin system in human uterine decidual cells. Hypertension 2000, 36:159–164.

    PubMed  CAS  Google Scholar 

  17. Oelkers WK: Effects of estrogens and progestogens on the renin-aldosterone system and blood pressure. Steroids 1996, 61:166–171.

    Article  PubMed  CAS  Google Scholar 

  18. Shah DM, Higuchi K, Inagami T, Osteen KG: Effect of progesterone on renin secretion in endometrial stromal, chorionic trophoblast, and mesenchymal monolayer cultures. Am J Obstet Gynecol 1991, 164:1145–1150.

    PubMed  CAS  Google Scholar 

  19. Yan JS, Guo LH, Liu J, Wang H: [Modulation of the secretion of active renin in human decidual cells by progesterone]. Sheng Li Xue Bao 1999, 51:211–218.

    PubMed  CAS  Google Scholar 

  20. Dzau VJ, Gonzalez D, Ellison K, et al.: Characterization of purified rabbit uterine renin: influence of pregnancy on uterine inactive renin. Endocrinology 1987, 120:358–364.

    PubMed  CAS  Google Scholar 

  21. Itakura A, Mizutani S: Involvement of placental peptidases associated with renin-angiotensin systems in preeclampsia. Biochim Biophys Acta 2005, 1751:68–72.

    PubMed  CAS  Google Scholar 

  22. Leung PS, Tsai SJ, Wallukat G, et al.: The upregulation of angiotensin II receptor AT(1) in human preeclamptic placenta. Mol Cell Endocrinol 2001, 184:95–102.

    Article  PubMed  CAS  Google Scholar 

  23. Kalenga MK, Thomas K, de Gasparo M, De Hertogh R: Determination of renin, angiotensin-converting enzyme and angiotensin II levels in human placenta, chorion and amnion from women with pregnancy-induced hypertension. Clin Endocrinol (Oxf) 1996, 44:429–433.

    Article  CAS  Google Scholar 

  24. Skinner SL, Lumbers ER, Symonds EM: Analysis of changes in the renin-angiotensin system during pregnancy. Clin Sci 1972, 42:479–488.

    PubMed  CAS  Google Scholar 

  25. Brown MA, Zammit VC, Mitar DA, Whitworth JA: Renin-aldosterone relationships in pregnancy-induced hypertension. Am J Hypertens 1992, 5:366–371.

    PubMed  CAS  Google Scholar 

  26. Symonds EM, Broughton Pipkin F, Craven DJ: Changes in the renin-angiotensin system in primigravidae with hypertensive disease of pregnancy. Br J Obstet Gynaecol 1975, 82:643–650.

    PubMed  CAS  Google Scholar 

  27. Abdul-Karim R, Assali N: Pressor response to angiotonin in pregnant and nonpregnant women. Am J Obstet Gynecol 1961, 82:246–251.

    PubMed  CAS  Google Scholar 

  28. Gant NF, Daley GL, Chand S, et al.: A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973, 52:2682–2689.

    PubMed  CAS  Google Scholar 

  29. Merrill DC, Karoly M, Chen K, et al.: Angiotensin-(1-7) in normal and preeclamptic pregnancy. Endocrine 2002, 18:239–245.

    Article  PubMed  CAS  Google Scholar 

  30. August P, Lenz T, Ales KL, et al.: Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia. Am J Obstet Gynecol 1990, 163:1612–1621.

    PubMed  CAS  Google Scholar 

  31. Hill PA, Fairley KF, Kincaid-Smith P, et al.: Morphologic changes in the renal glomerulus and the juxtaglomerular apparatus in human preeclampsia. J Pathol 1988, 156:291–303.

    Article  PubMed  CAS  Google Scholar 

  32. Brown MA, Wang J, Whitworth JA: The renin-angiotensinaldosterone system in pre-eclampsia. Clin Exp Hypertens 1997, 19:713–726.

    PubMed  CAS  Google Scholar 

  33. August P, Helseth G, Cook EF, Sison C: A prediction model for superimposed preeclampsia in women with chronic hypertension during pregnancy. Am J Obstet Gynecol 2004, 191:1666–1672.

    Article  PubMed  Google Scholar 

  34. Bachmann S, Peters J, Engler E, et al.: Transgenic rats carrying the mouse renin gene—morphological characterization of a low-renin hypertension model. Kidney Int 1992, 41:24–36.

    PubMed  CAS  Google Scholar 

  35. Shah DM, Banu JM, Chirgwin JM, Tekmal RR: Reproductive tissue renin gene expression in preeclampsia. Hypertens Pregnancy 2000, 19:341–351.

    Article  PubMed  CAS  Google Scholar 

  36. Assali NS, Westersten A: Regional flow-pressure relationship in response to angiotensin in the intact dog and sheep. Circ Res 1961, 9:189–193.

    PubMed  CAS  Google Scholar 

  37. Ferris TF, Stein JH, Kauffman J: Uterine blood flow and uterine renin secretion. J Clin Invest 1972, 51:2827–2833.

    PubMed  CAS  Google Scholar 

  38. Cox BE, Williams CE, Rosenfeld CR: Angiotensin II indirectly vasoconstricts the ovine uterine circulation. Am J Physiol Regul Integr Comp Physiol 2000, 278:R337-R344.

    PubMed  CAS  Google Scholar 

  39. Takimoto E, Ishida J, Sugiyama F, et al.: Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science 1996, 274:995–998. This article presents evidence for a role for placental renin and maternal angiotensinogen in the development of the maternal syndrome of preeclampsia in an experimental transgene model, mediated by the actions of Ang II.

    Article  PubMed  CAS  Google Scholar 

  40. Saito T, Ishida J, Takimoto-Ohnishi E, et al.: An essential role for angiotensin II type 1a receptor in pregnancyassociated hypertension with intrauterine growth retardation. FASEB J 2004, 18:388–390.

    PubMed  CAS  Google Scholar 

  41. Samani NJ, Godfrey NP, Major JS, et al.: Kidney renin mRNA levels in the early and chronic phases of two-kidney, one clip hypertension in the rat. J Hypertens 1989, 7:105–112.

    PubMed  CAS  Google Scholar 

  42. Abitbol MM, Pirani CL, Ober WB, et al.: Production of experimental toxemia in the pregnant dog. Obstet Gynecol 1976, 48:537–548.

    PubMed  CAS  Google Scholar 

  43. Alexander BT, Kassab SE, Miller MT, et al.: Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension 2001, 37:1191–1195.

    PubMed  CAS  Google Scholar 

  44. Cavanagh D, Rao PS, Tsai CC, O’Connor TC: Experimental toxemia in the pregnant primate. Am J Obstet Gynecol 1977, 128:75–85.

    PubMed  CAS  Google Scholar 

  45. Combs CA, Katz MA, Kitzmiller JL, Brescia RJ: Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am J Obstet Gynecol 1993, 169:215–223.

    PubMed  CAS  Google Scholar 

  46. Chesley LC, Talledo E, Bohler CS, Zuspan FP: Vascular reactivity to angiotensin II and norepinephrine in pregnant women. Am J Obstet Gynecol 1965, 91:837–842.

    PubMed  CAS  Google Scholar 

  47. Schobel HP, Fischer T, Heuszer K, et al.: Preeclampsia—a state of sympathetic overactivity. N Engl J Med 1996, 335:1480–1485.

    Article  PubMed  CAS  Google Scholar 

  48. Fitzgerald DJ, Rocki W, Murray R, et al.: Thromboxane A2 synthesis in pregnancy-induced hypertension. Lancet 1990, 335:751–754.

    Article  PubMed  CAS  Google Scholar 

  49. Furuhashi N, Tsujiei M, Kimura H, et al.: Plasma renin activity, angiotensin II, prostacyclin and thromboxane A2 concentrations in 139 preeclamptic patients. Tohoku J Exp Med 1990, 162:235–241.

    Article  PubMed  CAS  Google Scholar 

  50. Lindheimer MD, Katz AI, Nolten WE, et al.: Sodium and mineralocorticoids in normal and abnormal pregnancy. Adv Nephrol Necker Hosp 1977, 7:33–59.

    PubMed  CAS  Google Scholar 

  51. Lopatin DA, Ailamazian EK, Dmitrieva RI, et al.: Circulating bufodienolide and cardenolide sodium pump inhibitors in preeclampsia. J Hypertens 1999, 17:1179–1187.

    Article  PubMed  CAS  Google Scholar 

  52. Maxwell CV, Tao QF, Seely EW, et al.: Regulation of the sodium pump in pregnancy-related tissues in preeclampsia. Am J Obstet Gynecol 1998, 179:28–34.

    Article  PubMed  CAS  Google Scholar 

  53. AbdAlla S, Lother H, el Massiery A, Quitterer U: Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 2001, 7:1003–1009. This paper provides a novel molecular basis for the mechanism of increased Ang II sensitivity in human preeclampsia.

    Article  PubMed  CAS  Google Scholar 

  54. Wallukat G, Homuth V, Fischer T, et al.: Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 1999, 103:945–952. This paper presents a novel mechanism for mediating Ang II actions on endothelium and mesangial cells in human preeclampsia.

    PubMed  CAS  Google Scholar 

  55. Dechend R, Viedt C, Muller DN, et al.: AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003, 107:1632–1639.

    Article  PubMed  CAS  Google Scholar 

  56. Thway TM, Shlykov SG, Day MC, et al.: Antibodies from preeclamptic patients stimulate increased intracellular Ca2+ mobilization through angiotensin receptor activation. Circulation 2004, 110:1612–1619.

    Article  PubMed  CAS  Google Scholar 

  57. Bobst SM, Day MC, Gilstrap LC 3rd, et al.: Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human mesangial cells and induce interleukin-6 and plasminogen activator inhibitor-1 secretion. Am J Hypertens 2005, 18:330–336.

    Article  PubMed  CAS  Google Scholar 

  58. Clark DE, Smith SK, He Y, et al.: A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998, 59:1540–1548.

    Article  PubMed  CAS  Google Scholar 

  59. He Y, Smith SK, Day KA, et al.: Alternative splicing of vascular endothelial growth factor (VEGF)-R1 (FLT-1) pre-mRNA is important for the regulation of VEGF activity. Mol Endocrinol 1999, 13:537–545.

    Article  PubMed  CAS  Google Scholar 

  60. Maynard SE, Min JY, Merchan J, et al.: Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003, 111:649–658.

    Article  PubMed  CAS  Google Scholar 

  61. Zhou Y, McMaster M, Woo K, et al.: Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am J Pathol 2002, 160:1405–1423.

    PubMed  CAS  Google Scholar 

  62. Khatun S, Kanayama N, Sato E, et al.: Eclamptic plasma stimulates norepinephrine release in cultured sympathetic nerve. Hypertension 1998, 31:1343–1349.

    PubMed  CAS  Google Scholar 

  63. Nova A, Sibai BM, Barton JR, et al.: Maternal plasma level of endothelin is increased in preeclampsia. Am J Obstet Gynecol 1991, 165:724–727.

    PubMed  CAS  Google Scholar 

  64. Shah D, Frazer M, Badr KF: Circulating endothelin-1 is not increased in severe preeclampsia. J Matern Fetal Med 1992, 1:177–180.

    Google Scholar 

  65. Taylor RN, Varma M, Teng NN, Roberts JM: Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J Clin Endocrinol Metab 1990, 71:1675–1677.

    Article  PubMed  CAS  Google Scholar 

  66. Hubel CA: Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med 1999, 222:222–235.

    Article  PubMed  CAS  Google Scholar 

  67. McIntyre M, Bohr DF, Dominiczak AF: Endothelial function in hypertension: the role of superoxide anion. Hypertension 1999, 34:539–545.

    PubMed  CAS  Google Scholar 

  68. Pascoal IF, Lindheimer MD, Nalbantian-Brandt C, Umans JG: Preeclampsia selectively impairs endothelium-dependent relaxation and leads to oscillatory activity in small omental arteries. J Clin Invest 1998, 101:464–470.

    Article  PubMed  CAS  Google Scholar 

  69. Roggensack AM, Zhang Y, Davidge ST: Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension 1999, 33:83–89.

    PubMed  CAS  Google Scholar 

  70. Platts JK, Meadows P, Jones R, Harvey JN: The relation between tissue kallikrein excretion rate, aldosterone and glomerular filtration rate in human pregnancy. BJOG 2000, 107:278–281.

    Article  PubMed  CAS  Google Scholar 

  71. McKinley MJ, Albiston AL, Allen AM, et al.: The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003, 35:901–918.

    Article  PubMed  CAS  Google Scholar 

  72. Belfort MA, Grunewald C, Saade GR, et al.: Preeclampsia may cause both overperfusion and underperfusion of the brain: a cerebral perfusion based model. Acta Obstet Gynecol Scand 1999, 78:586–591.

    Article  PubMed  CAS  Google Scholar 

  73. Takao M, Kobari M, Tanahashi N, et al.: Dilatation of cerebral parenchymal vessels mediated by angiotensin type 1 receptor in cats. Neurosci Lett 2002, 318:108–112.

    Article  PubMed  CAS  Google Scholar 

  74. Zeek PM, Assali NS: Vascular changes in the decidua associated with eclamptogenic toxemia of pregnancy. Am J Clin Pathol 1950, 20:1099–1109.

    PubMed  CAS  Google Scholar 

  75. De Wolf F, Brosens I, Robertson WB: Ultrastructure of uteroplacental arteries. Contrib Gynecol Obstet 1982, 9:86–99.

    PubMed  Google Scholar 

  76. Kintscher U, Wakino S, Kim S, et al.: Angiotensin II induces migration and Pyk2/paxillin phosphorylation of human monocytes. Hypertension 2001, 37:587–593.

    PubMed  CAS  Google Scholar 

  77. Capers Qt, Alexander RW, Lou P, et al.: Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 1997, 30:1397–1402.

    PubMed  CAS  Google Scholar 

  78. Bush E, Maeda N, Kuziel WA, et al.: CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 2000, 36:360–363.

    PubMed  CAS  Google Scholar 

  79. Nemerson Y: Tissue factor and hemostasis. Blood 1988, 71:1–8.

    PubMed  CAS  Google Scholar 

  80. Dechend R, Homuth V, Wallukat G, et al.: AT(1) receptor agonistic antibodies from preeclamptic patients cause vascular cells to express tissue factor. Circulation 2000, 101:2382–2387.

    PubMed  CAS  Google Scholar 

  81. Brown NJ, Vaughan DE: Prothrombotic effects of angiotensin. Adv Intern Med 2000, 45:419–429.

    PubMed  CAS  Google Scholar 

  82. Napoleone E, Di Santo A, Camera M, et al.: Angiotensinconverting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res 2000, 86:139–143.

    PubMed  CAS  Google Scholar 

  83. Shah DM: Role of renin angiotensin system in the pathogenesis of preeclampsia. Am J Physiol Renal Physiol 2005, 288:F614-F625.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh M. Shah MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, D.M. The role of RAS in the pathogenesis of preeclampsia. Current Science Inc 8, 144–152 (2006). https://doi.org/10.1007/s11906-006-0011-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-006-0011-1

Keywords

Navigation