Skip to main content

Advertisement

Log in

Genetic targeting of the renin-angiotensin system for long-term control of hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Although traditional approaches are effective for the treatment and control of hypertension, they have not succeeded in curing the disease, and have therefore reached a plateau. As a result of the completion of the Human Genome Project and the continuous advancement in gene delivery systems, it is now possible to investigate genetic means for the treatment and possible cure for hypertension. In this review we discuss the potential of genetic targeting of the renin-angiotensin system for the treatment of hypertension. We provide examples of various approaches that have used antisense technology with a high degree of success. We focus on our own research, which targets the use of antisense of the angiotensin type I receptor in various models of hypertension. Finally, we discuss the future of antisense technology in the treatment of human hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Deshmukh R, Smith A, Lilly LS: Hypertension. In Pathophysiology of Heart Disease. Edited by Lilly LS. Baltimore: Williams & Wilkins; 1998:267–288.

    Google Scholar 

  2. American Heart Association: 2001 Heart and Stroke Statistical Update. Accessible at www.americanheart.org/statistics/ index.html. Accessed October 31, 2001.

  3. Kang PM, Landau AJ, Eberhardt RT, Frishman WH: Angiotensin II receptor antagonists: A new approach to blockade of the renin-angiotensin system. Am Heart J 1994, 127:1388–1401.

    Article  PubMed  CAS  Google Scholar 

  4. Stamler J, Stamler R, Neaton JD: Blood pressure, systolic and diastolic, and cardiovascular risks. Arch Intern Med 1993, 153:598–615.

    Article  PubMed  CAS  Google Scholar 

  5. Sixth Report of the Joint National Committee on Prevention, Evaluation and Treatment of High Blood Pressure. JNC VI, 1991–1994. Arch Intern Med 1997, 157:2413–2446.

    Article  Google Scholar 

  6. Wang C, Chao L, Chao J: Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats. J Clin Invest 1995, 95:1710–1716.

    Article  PubMed  CAS  Google Scholar 

  7. Yayama K, Wang C, Chao L, Chao J: Kallikrein gene delivery attenuates hypertension and cardiac hypertrophy and enhances renal function in Goldblatt hypertensive rats. Hypertension 1998, 32:1104–1110.

    Google Scholar 

  8. Chao J, Zhang JJ, Kin K-F, Chao L: Human kallikrein gene delivery attenuates hypertension, cardiac hypertrophy, and renal injury in Dahl salt-sensitive rats. Hum Gene Ther 1998, 9:21–31.

    PubMed  CAS  Google Scholar 

  9. Dobrzynski E, Wang C, Chao J, Chao L: Adrenomedullin gene delivery attenuates hypertension, cardiac remodeling, and renal injury in deoxycorticosterone acetate-salt hypertensive rats. Hypertension 2000, 36:995–1001. Findings demonstrate that human adrenomedullin gene delivery attenuates hypertension and protects against cardiac remodeling and renal damage in a volume-overload model of hypertension.

    PubMed  CAS  Google Scholar 

  10. Lin KF, Chao J, Chao L: Human atrial natriuretic peptide gene delivery reduces blood pressure in hypertensive rats. Hypertension 1995, 26:847–853.

    PubMed  CAS  Google Scholar 

  11. Lin KF, Chao J, Chao L: Prolonged reduction of high blood pressure with human nitric oxide synthase gene delivery. Hypertension 1997, 30:307–313.

    PubMed  CAS  Google Scholar 

  12. Nakane H, Miller FJ, Faraci FM, et al.: Gene transfer of endothelial nitric oxide synthase reduces angiotensin II-induced endothelial dysfunction. Hypertension 2000, 35:595–601. This report demonstrates that gene transfer of eNOS, but not SOD, effectively restores vasomotor function in a rabbit model of hypertension.

    PubMed  CAS  Google Scholar 

  13. Alexander MY, Brosnan MJ, Hamilton CA, et al.: Gene transfer of endothelial nitric oxide synthase improves nitric oxide- dependent endothelial cell function in a hypertensive rat model. Cardiovas Res 1999, 43:798–807.

    Article  CAS  Google Scholar 

  14. Zhang YC, Kimura B, Shen L, Phillips MI: Prolonged reduction in high blood pressure with b1 antisense oligodeoxynucleotides. Hypertension 2000, 35:219–224.

    CAS  Google Scholar 

  15. Kimura B, Mohuczy D, Tang X, Phillips MI: Attenuation of hypertension and heart hypertrophy by adeno-associated virus delivering angiotensinogen antisense. Hypertension 2001, 37:378–380.

    Google Scholar 

  16. Wielbo D, Simon A, Phillips MI, Toffolo S: Inhibition of hypertension by peripheral administration of antisense oligodeoxynucleotides. Hypertension 1996, 28:147–151.

    PubMed  CAS  Google Scholar 

  17. Tomita N, Morishita R, Higaki J, et al.: Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension 1995, 26:131–136.

    PubMed  CAS  Google Scholar 

  18. Gyurdo R, Wielbo D, Phillips MI: Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Peptide 1993, 49:167–174.

    Article  Google Scholar 

  19. Makino N, Sugano M, Ohtsuka S, Sawada S: Intravenous injection with antisense oligodeoxynucleotides against angiotensinogen decreases blood pressure in spontaneously hypertensive rats. Hypertension 1998, 31:1166–1170.

    PubMed  CAS  Google Scholar 

  20. Katovich MJ, Gelband CH, Reaves P, et al.: Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in adult SHR. Am J Physiol 1998, 277:H1260-H1264.

    Google Scholar 

  21. Iyer SN, Lu D, Katovich MJ, Raizada MK: Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Proc Natl Acad Sci U S A 1996, 93:9960–9965.

    Article  PubMed  CAS  Google Scholar 

  22. Lu D, Raizada MK, Iyer S, et al.: Losartan versus gene therapy: chronic control of high blood pressure in spontaneously hypertensive rats. Hypertension 1997, 30:363–370.

    PubMed  CAS  Google Scholar 

  23. Martens J, Reaves PY, Lu D, et al.: Prevention of renovascular and cardiac pathophysiological changes in hypertension by angiotensin II type 1 receptor antisense gene therapy. Proc Natl Acad Sci U S A 1998, 95:2264–2269.

    Article  Google Scholar 

  24. Pachori AS, Wang H, Gelband CH, et al.: Inability to induce hypertension in normotensive rat expressing AT1 receptor antisense. Circ Res 2000, 86:1167–1172. This paper suggests that an early gene therapy approach may protect against the eventual development of hypertension and other cardiovascular diseases.

    PubMed  CAS  Google Scholar 

  25. LuD, Raizada MK: Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin actin in neurons from hypertensive rat brain. Proc Natl Acad Sci U S A 1995, 92:2914–2918.

    Article  PubMed  CAS  Google Scholar 

  26. Lu D, Yu K, Raizada MK: Retrovirus-mediated transfer of an angiotensin type I receptor (AT1-R) antisense sequence decreases AT1-Rs and angiotensin II action in astroglial and neuronal cells in primary cultures from the brain. Proc Natl Acad Sci U S A 1995, 92:1162–1166.

    Article  PubMed  CAS  Google Scholar 

  27. Wang H, Reaves PY, Gardon ML, et al.: Angiotensin I-converting enzyme antisense gene therapy causes permanent antihypertensive effects in the SHR. Hypertension 2000, 35:202–208.

    PubMed  CAS  Google Scholar 

  28. Reaves PY, Gelband CH, Wang H, et al.: Permanent cardiovascular protection from hypertension by the AT1 receptor antisense gene therapy in hypertensive rat offspring. Circ Res 1999, 85:e44-e50. This article demonstrates that a single intracardiac injection of a retroviral vector containing AT1 receptor antisense can cause permanent cardiovascular protection against hypertension as a result of genomic integration and germ-line transmission on the transgene in SHR offspring.

    PubMed  CAS  Google Scholar 

  29. Harris JD, Lemoine NR: Strategies for targeted gene therapy. Trends Genet 1996, 12:400–405.

    Article  PubMed  CAS  Google Scholar 

  30. Romano G, Claudio PP, Kaiser HE, Giordano A: Recent advances, prospects and problems in designing new strategies for oligonucleotide and gene delivery in therapy. In Vivo 1998, 12:59–67.

    PubMed  CAS  Google Scholar 

  31. Robbins PD, Ghivizzani SC: Viral vectors for gene therapy. Pharmacol Ther 1998, 80:35–47.

    Article  PubMed  CAS  Google Scholar 

  32. Wivel NA, Wilson JM: Methods of gene delivery. Hematol Oncol Clin North Am 1998, 12:483–501.

    Article  PubMed  CAS  Google Scholar 

  33. Middleton PG, Alton EW: Gene therapy for cystic fibrosis: which postman, which box? Thorax 1998, 53:197–199.

    Article  PubMed  CAS  Google Scholar 

  34. Morishita R, Gibbons GH, Ellison KE, et al.: Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A 1993, 90:8474–8478.

    Article  PubMed  CAS  Google Scholar 

  35. Tomita N, Higaki J, Kaneda Y, et al.: Hypertensive rats produced by in vivo introduction of the human renin gene. Circ Res 1993, 73:898–905.

    PubMed  CAS  Google Scholar 

  36. Guntaka RV, Swamynathan SK: Retroviral vectors for gene therapy. Indian J Exp Biol 1998, 36:359–345.

    Google Scholar 

  37. Kovesdi I, Brough DE, Bruder JT, Wickham TJ: Adenoviral vectors for gene transfer. Curr Opin Biotechnol 1997, 8:583–589.

    Article  PubMed  CAS  Google Scholar 

  38. Channon KM, George SE: Improved adenoviral vectors: cautious optimism for gene therapy. Q J Med 1997, 90:105–109.

    CAS  Google Scholar 

  39. Lu D, Yang H, Raizada MK: Attenuation of ANG II actions by adenovirus delivery of AT1 receptor antisense in neurons and SMC. Am J Physiol 1998, 274:H719-H727.

    PubMed  CAS  Google Scholar 

  40. Flotte TR, Carter BJ: Adeno-associated virus vectors for gene therapy. Gene Ther 1995, 2:357–362.

    PubMed  CAS  Google Scholar 

  41. Langer JC, Klotman ME, Hanss B, et al.: Adeno-associated virus gene transfer into renal cells: potential for in vivo gene delivery. Exp Nephrol 1998, 6:189–194.

    Article  PubMed  CAS  Google Scholar 

  42. Hallek M, Wendtner CM: Recombinant adeno-associated virus (rAAV) vectors for somatic gene therapy: recent advances and potential clinical applications. Cytokines Mol Ther 1996, 2:69–79.

    PubMed  CAS  Google Scholar 

  43. Naldini L, Blomer U, Gage FH, et al.: Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 1996, 93:11382–11388.

    Article  PubMed  CAS  Google Scholar 

  44. Dzau VJ: Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993, 153:937–942.

    Article  PubMed  CAS  Google Scholar 

  45. Dzau VJ: Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation 1988, 77:I4–13.

    PubMed  CAS  Google Scholar 

  46. Gohlke P, Stoll M, Lamberty V, et al.: Cardiac and vascular effects of chronic angiotensin concerting enzyme inhibition at subantihypertensive doses. J Hypertens 1992, 10(Suppl 6):S141-S144.

    CAS  Google Scholar 

  47. Gohlke P, Linz W, Scholkens BA, et al.: Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension 1996, 28:397–402.

    PubMed  CAS  Google Scholar 

  48. Raizada MK, Francis SC, Wang H, et al.: Targeting of the reninangiotensin system by antisense gene therapy: A possible strategy for the long-term control of hypertension. J Hypertens 2000, 18:353–362.

    Article  PubMed  CAS  Google Scholar 

  49. Pachori AS, Heuntelman MJ, Francis SC, et al.: The future of hypertension therapy: sense, antisense, or nonsense? Hypertension 2001, 37:357–364.

    PubMed  CAS  Google Scholar 

  50. Pinto YM, Paul M, Ganten D: Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 1998, 39:77–88.

    Article  PubMed  CAS  Google Scholar 

  51. Nakamura Y, Ono H, Zhou X, Frohlich ED: Angiotensin type 1 receptor antagonism and ACE Inhibition produce similar renoprotection in Nw-Nitro-L-arginine methyl ester/spontaneously hypertensive rats. Hypertension 2001, 37:1262–1267. This study demonstrated that both AT1 receptor antagonism and ACE inhibition have similar renal protective effects, which are achieved through reducing the effects on angiotensin II. In addition, the inhibition of bradykinin degradation was not responsible for the renoprotection.

    PubMed  CAS  Google Scholar 

  52. Pachori AS, Ferrario CM, Raizada MK, Katovich MJ: Effectiveness of AT1R-AS gene therapy in monogenic and non-genetic models of hypertension. FASEB J 2000, 14:A368.

    Google Scholar 

  53. Katovich MJ, Reaves PY, Francis SC, et al.: Gene therapy attenuates the elevated blood pressure and glucose intolerance in an insulin resistant model of hypertension. J Hypertens 2001, In press.

  54. Muotri AR, da Veiga Pereira L, dos Reis Vasques L, Menck CF: Ribozymes and the anti-gene therapy: how a catalytic RNA can be used to inhibit gene function. Gene 1999, 237:303–310.

    Article  PubMed  CAS  Google Scholar 

  55. De Young MB, Kincade-Denker J, Boehm CA, et al.: Functional characterization of ribozymes expressed using U1 and T7 vectors for the intracellular cleavage of ANF mRNA. Biochem 1994, 33:12127–12138.

    Article  Google Scholar 

  56. Gibson SA, Shillitoe EL: Ribozymes. Their functions and strategies for their use. Mol Biotechnol 1997, 7:125–137.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metcalfe, B.L., Raizada, M.K. & Katovich, M.J. Genetic targeting of the renin-angiotensin system for long-term control of hypertension. Current Science Inc 4, 25–31 (2002). https://doi.org/10.1007/s11906-002-0049-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-002-0049-7

Keywords

Navigation