Skip to main content
Log in

Hypertension and insulin disorders

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Insulin resistance and/or compensatory hyperinsulinemia are associated with hypertension, obesity, dyslipidemia, and glucose intolerance. Insulin resistance and hyperinsulinemia are considered to increase blood pressure through sympathetic nervous system activation, renin-angiotensin system stimulation, and vascular smooth muscle cell proliferation. Leptin, magnesium ions, nitric oxide, endothelin, peroxisome proliferator-activated receptor γ, and tumor necrosis factor-α also modulate blood pressure. Decreasing insulin resistance by lifestyle modification including diet, weight loss, and physical exercise has been shown to reduce blood pressure. Angiotensin-converting enzyme inhibitors have a beneficial effect on insulin resistance. On the other hand, the angiotensin II antagonist, losartan, does not affect insulin sensitivity. The selective α1-blockers have a favorable metabolic profile producing increases in insulin sensitivity. A short-acting type calcium channel blocker seems to decrease insulin sensitivity. On the other hand, long-acting type calcium channel blockers improve insulin sensitivity. Thiazide diuretics and most of the β-blockers decrease insulin sensitivity. Vasodilatory β-blockers have been reported to improve insulin sensitivity. Use of low-dose diuretics avoids the adverse effects seen with conventional doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Modan M, Halkin H, Almog S, et al.: Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 1985, 75:809–817.

    PubMed  CAS  Google Scholar 

  2. Welborn TA, Breckenridge A, Rubinstein AH, et al.: Serum-insulin in essential hypertension and in peripheral vascular disease. Lancet 1966, 1:1336–1337.

    Article  PubMed  CAS  Google Scholar 

  3. Feskens EJ, Tuomilehto J, Stengard JH, et al.: Hypertension and overweight associated with hyperinsulinaemia and glucose tolerance: a longitudinal study of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetologia 1995, 38:839–847.

    Article  PubMed  CAS  Google Scholar 

  4. Haffner SM, Miettinen H, Gaskill SP, Stern MP: Metabolic precursors of hypertension. The San Antonio Heart Study. Arch Intern Med 1996, 156:1994–2001.

    Article  PubMed  CAS  Google Scholar 

  5. Imazu M, Yamamoto H, Toyofuku M, et al.: Hyperinsulinemia for the development of hypertension: data from the Hawaii-Los Angeles-Hiroshima Study. Hypertens Res 2001, 24:531–536.

    Article  PubMed  CAS  Google Scholar 

  6. Saad MF, Lillioja S, Nyomba BL, et al.: Racial differences in the relation between blood pressure and insulin resistance. N Engl J Med 1991, 324:733–739.

    Article  PubMed  CAS  Google Scholar 

  7. Shetterly SM, Rewers M, Hamman RF, Marshall JA: Patterns and predictors of hypertension incidence among Hispanics and non-Hispanic whites: the San Luis Valley Diabetes Study. J Hypertens 1994, 12:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  8. Imazu M, Sumida K, Yamabe T, et al.: A comparison of the prevalence and risk factors of high blood pressure among Japanese living in Japan, Hawaii, and Los Angeles. Public Health Rep 1996, 111:59–61.

    PubMed  Google Scholar 

  9. Hall JE, Hildebrandt DA, Kuo J: Obesity hypertension: role of leptin and sympathetic nervous system. Am J Hypertens 2001, 14:103S-115S. Leptin and its multiple interactions with other neurochemical pathways in the hypothalamus may be a partial link between excess weight gain and increased sympathetic activity.

    Article  PubMed  CAS  Google Scholar 

  10. Tomiyama H, Kushiro T, Abeta H, et al.: Blood pressure response to hyperinsulinemia in salt-sensitive and salt-resistant rats. Hypertension 1992, 20:596–600.

    PubMed  CAS  Google Scholar 

  11. Feldman RD, Schmidt ND: Quinapril treatment enhances vascular sensitivity to insulin. J Hypertens 2001, 19:113–118. This study suggests the hypothesis that the ACE inhibitor quinapril has beneficial effects on vascular function in general, and on insulinmediated vascular responses in particular.

    Article  PubMed  CAS  Google Scholar 

  12. Higashiura K, Ura N, Takada T, et al.: The effects of an angiotensin-converting enzyme inhibitor and an angiotensin II receptor antagonist on insulin resistance in fructose-fed rats. Am J Hypertens 2000, 13:290–297.

    Article  PubMed  CAS  Google Scholar 

  13. Folli F, Kahn CR, Hansen H, et al.: Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 1997, 100:2158–2169.

    PubMed  CAS  Google Scholar 

  14. Fang TC, Huang WC: Angiotensin receptor blockade blunts hyperinsulinemia-induced hypertension in rats. Hypertension 1998, 32:235–242.

    PubMed  CAS  Google Scholar 

  15. Velloso LA, Folli F, Sun XJ, et al.: Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 1996, 93:12490–12495.

    Article  PubMed  CAS  Google Scholar 

  16. Santucci A, Ferri C: Insulin resistance and essential hypertension: pathophysiologic and therapeutic implications. J Hypertens 1992, 10(Suppl):S9-S15.

    CAS  Google Scholar 

  17. Feraille E, Carranza ML, Gonin S, et al.: Insulin-induced stimulation of Na+,K(+)-ATPase activity in kidney proximal tubule cells depends on phosphorylation of the alpha-subunit at Tyr-10. Mol Biol Cell 1999, 10:2847–2859.

    PubMed  CAS  Google Scholar 

  18. Sechi LA: Mechanisms of insulin resistance in rat models of hypertension and their relationships with salt sensitivity. J Hypertens 1999, 17:1229–1237.

    Article  PubMed  CAS  Google Scholar 

  19. Halaas JL, Gajiwala KS, Maffei M, et al.: Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995, 269:543–546.

    Article  PubMed  CAS  Google Scholar 

  20. Haynes WG, Morgan DA, Walsh SA, et al.: Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997, 100:270–278.

    PubMed  CAS  Google Scholar 

  21. Aizawa-Abe M, Ogawa Y, Masuzaki H, et al.: Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest 2000, 105:1243–1252. This study demonstrated blood pressure elevation in transgenic skinny mice and obese KKA(y) mice that are both hyperleptinemic. Leptin may play an important role in obesity-related hypertension.

    PubMed  CAS  Google Scholar 

  22. Considine RV, Sinha MK, Heiman ML, et al.: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996, 334:292–295.

    Article  PubMed  CAS  Google Scholar 

  23. Haffner SM, Stern MP, Miettinen H, et al.: Leptin concentrations in diabetic and nondiabetic Mexican-Americans. Diabetes 1996, 45:822–824.

    Article  PubMed  CAS  Google Scholar 

  24. Segal KR, Landt M, Klein S: Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes 1996, 45:988–991.

    Article  PubMed  CAS  Google Scholar 

  25. Agata J, Masuda A, Takada M, et al.: High plasma immunoreactive leptin level in essential hypertension. Am J Hypertens 1997, 10:1171–1174.

    Article  PubMed  CAS  Google Scholar 

  26. Paolisso G, Barbagallo M: Hypertension, diabetes mellitus, and insulin resistance: the role of intracellular magnesium. Am J Hypertens 1997, 10:346–355.

    Article  PubMed  CAS  Google Scholar 

  27. Feener EP, King GL: Vascular dysfunction in diabetes mellitus. Lancet 1997,350 Suppl1:S19-S13.

    Google Scholar 

  28. Hsueh WA, Law RE: Insulin signaling in the arterial wall. Am J Cardiol 1999, 84:21J-24J.

    Article  PubMed  CAS  Google Scholar 

  29. Siffert W, Dusing R: Sodium-proton exchange and primary hypertension. An update. Hypertension 1995, 26:649–655.

    PubMed  CAS  Google Scholar 

  30. Sartori M, Ceolotto G, Semplicini A: MAPKinase and regulation of the sodium-proton exchanger in human red blood cell. Biochim Biophys Acta 1999, 1421:140–148.

    Article  PubMed  CAS  Google Scholar 

  31. Steinberg HO, Brechtel G, Johnson A, et al.: Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994, 94:1172–1179.

    PubMed  CAS  Google Scholar 

  32. Steinberg HO, Chaker H, Leaming R, et al.: Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest 1996, 97:2601–2610.

    Article  PubMed  CAS  Google Scholar 

  33. Kuboki K, Jiang ZY, Takahara N, et al.: Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 2000, 101:676–681. This study shows the regulation of eNOS gene expression in the insulin resistance states. Insulin enhances eNOS gene expression. The activation of protein kinase C in the vascular tissues as in insulin resistance and diabetes may inhibit PI-3 kinase activity and eNOS expression and may lead to endothelial dysfunctions in the insulinresistant states.

    PubMed  CAS  Google Scholar 

  34. Zizek B, Poredos P: Insulin resistance adds to endothelial dysfunction in hypertensive patients and in normotensive offspring of subjects with essential hypertension. J Intern Med 2001, 249:189–197.

    Article  PubMed  CAS  Google Scholar 

  35. Piatti PM, Monti LD, Conti M, et al.: Hypertriglyceridemia and hyperinsulinemia are potent inducers of endothelin-1 release in humans. Diabetes 1996, 45:316–321.

    Article  PubMed  CAS  Google Scholar 

  36. Ferri C, Pittoni V, Piccoli A, et al.: Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab 1995, 80:829–835.

    Article  PubMed  CAS  Google Scholar 

  37. Cardillo C, Nambi SS, Kilcoyne CM, et al.: Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation 1999, 100:820–825.

    PubMed  CAS  Google Scholar 

  38. Takeda K, Ichiki T, Tokunou T, et al.: Peroxisome proliferatoractivated receptor gamma activators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells. Circulation 2000, 102:1834–1839. This study demonstrated that natural PPAR γ ligand 15-deoxy-Delta(12,14)-prostaglandin J(2), as well as troglitazone, reduced the AT1 receptor mRNA expression and the AT1 receptor protein level. Downregulation of AT1 receptor may contribute to the inhibition of neointimal formation by PPAR γ activators.

    PubMed  CAS  Google Scholar 

  39. Nolan JJ, Ludvik B, Beerdsen P, et al.: Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994, 331:1188–1893.

    Article  PubMed  CAS  Google Scholar 

  40. Togashi N, Ura N, Higashiura K, et al.: Effect of TNF-alpha--converting enzyme inhibitor on insulin resistance in fructose-fed rats. Hypertension 2002, 39:578–580. This study demonstrated that skeletal muscle TNF-α may link to insulin resistance and hypertension and that angiotensin II may be one of the factors that regulates skeletal muscle TNF-α.

    Article  PubMed  CAS  Google Scholar 

  41. Fuenmayor N, Moreira E, Cubeddu LX: Salt sensitivity is associated with insulin resistance in essential hypertension. Am J Hypertens 1998, 11:397–402.

    Article  PubMed  CAS  Google Scholar 

  42. Harper R, Ennis CN, Heaney AP, et al.: A comparison of the effects of low-and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM. Diabetologia 1995, 38:853–859.

    Article  PubMed  CAS  Google Scholar 

  43. Malminiemi K, Lahtela J, Malminiemi O, et al.: Insulin sensitivity in a long-term crossover trial with celiprolol and other antihypertensive agents. J Cardiovasc Pharmacol 1998, 31:140–145.

    Article  PubMed  CAS  Google Scholar 

  44. Kosegawa I, Inaba M, Morita T, et al.: Effect of the vasodilatory beta-blocker, nipradilol, and Ca-antagonist, barnidipine, on insulin sensitivity in patients with essential hypertension. Clin Exp Hypertens 1998, 20:751–761.

    PubMed  CAS  Google Scholar 

  45. Poirier L, Cleroux J, Nadeau A, Lacourciere Y: Effects of nebivolol and atenolol on insulin sensitivity and haemodynamics in hypertensive patients. J Hypertens 2001, 19:1429–1435.

    Article  PubMed  CAS  Google Scholar 

  46. Landsberg L: Insulin resistance and hypertension. Clin Exp Hypertens 1999, 21:885–894.

    PubMed  CAS  Google Scholar 

  47. Lithell HO: Considerations in the treatment of insulin resistance and related disorders with a new sympatholytic agent. J Hypertens 1997, 15(Suppl):S39-S42.

    CAS  Google Scholar 

  48. Suzuki M, Kanazawa A, Hasegawa M, Harano Y: Improvement of insulin resistance in essential hypertension by long-acting Ca antagonist benidipine. Clin Exp Hypertens 1999, 21:1327–1344.

    Article  PubMed  CAS  Google Scholar 

  49. Fogari R, Zoppi A, Corradi L, et al.: Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertensive patients. Br J Clin Pharmacol 1998, 46:467–471.

    Article  PubMed  CAS  Google Scholar 

  50. Miyazaki Y, Murakami H, Hirata A, et al.: Effects of the angiotensin converting enzyme inhibitor temocapril on insulin sensitivity and its effects on renal sodium handling and the pressor system in essential hypertensive patients. Am J Hypertens 1998, 11:962–970.

    Article  PubMed  CAS  Google Scholar 

  51. Nakagawa H, Daihara M, Tamakawa H, et al.: Effects of quinapril and losartan on insulin sensitivity in genetic hypertensive rats with different metabolic abnormalities. J Cardiovasc Pharmacol 1999, 34:28–33.

    Article  PubMed  CAS  Google Scholar 

  52. Tomiyama H, Kushiro T, Abeta H, et al.: Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 1994, 23:450–455.

    PubMed  CAS  Google Scholar 

  53. Sheinfeld GR, Bakris GL: Benefits of combination angiotensinconverting enzyme inhibitor and calcium antagonist therapy for diabetic patients. Am J Hypertens 1999, 12:80S-85S.

    Article  PubMed  CAS  Google Scholar 

  54. Walker AB, Chattington PD, Buckingham RE, Williams G: The thiazolidinedione rosiglitazone (BRL-49653) lowers blood pressure and protects against impairment of endothelial function in Zucker fatty rats. Diabetes 1999, 48:1448–1453.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imazu, M. Hypertension and insulin disorders. Current Science Inc 4, 477–482 (2002). https://doi.org/10.1007/s11906-002-0029-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-002-0029-y

Keywords

Navigation