Skip to main content
Log in

Differentiation in the Angiotensin II Receptor 1 blocker class on autonomic function

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Autonomic function is disordered in cardiovascular disease states such as chronic heart failure (CHF) and hypertension. Interactions between the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS) may potentially occur at a number of sites. These include central sites (eg, rostral ventrolateral medulla), at the level of baroreflex control, and at the sympathetic prejunctional angiotensin II receptor 1 (AT1) receptor, which is facilitatory for norepinephrine release from the sympathetic nerve terminal. Therefore, drugs that block the RAAS may be expected to improve autonomic dysfunction in cardiovascular disease states. In order to test the hypothesis that RAAS inhibition directly reduces SNS activity, a pithed rat model of sympathetic stimulation has been established. In this model, an increase in frequency of stimulation results in a pressor response that is sympathetically mediated and highly reproducible. This pressor response is enhanced in the presence of angiotensin II and is reduced in the presence of nonselective AIIRAs that block both AT1 and AT2 receptor subtypes (eg, saralasin). AT1-selective antagonists have also been studied in this model, at pharmacologically relevant doses. In one such study, only the AT1 blocker eprosartan reduced sympathetically stimulated increases in blood pressure, whereas comparable doses of losartan, valsartan, and irbesartan did not. The reason(s) for the differences between eprosartan and other agents of this class on sympathetic modulation are not clear, but may relate to the chemical structure of the drug (a non-biphenyl tetrazole structure that is chemically distinct from the structure of other AIIRAs), receptor binding characteristics (competitive), or unique effects on presynaptic AT1 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahn KH, Barenbrock M, Hausberg M: The sympathetic nervous system in the pathogenesis of hypertension. J Hypertens 1999, 17(suppl 3):S11-S14.

    CAS  Google Scholar 

  2. Esler M, Jennings G, Korner P, et al.: Total, and organ-specific, noradrenaline plasma kinetics in essential hypertension. Clin Exp Hypertens [A] 1984, 6:507–521.

    CAS  Google Scholar 

  3. Floras JS, Hara K: Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens 1993, 11:647–655.

    Article  PubMed  CAS  Google Scholar 

  4. Julius S: The evidence for a pathophysiologic significance of the sympathetic overactivity in hypertension. Clin Exp Hypertens 1996, 18:305–321.

    PubMed  CAS  Google Scholar 

  5. Guzzetti S, Dassi S, Pecis M, et al.: Altered pattern of circadian neural control of heart period in mild hypertension. J Hypertens 1991, 9:831–838.

    Article  PubMed  CAS  Google Scholar 

  6. Floras JS: Clinical aspects of sympathetic activation and parasympathetic withdrawal in heart failure. J Am Coll Cardiol 1993, 22(suppl A):72A-84A.

    Article  PubMed  CAS  Google Scholar 

  7. Grassi G, Esler M: How to assess sympathetic activity in humans. J Hypertens 1999, 17:719–734.

    Article  PubMed  CAS  Google Scholar 

  8. Krum H: Sympathetic activation and the role of beta-blockers in chronic heart failure. Aust N Z J Med 1999, 29:418–427.

    PubMed  CAS  Google Scholar 

  9. Colucci WS: Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997, 80:15L-25L.

    Article  PubMed  CAS  Google Scholar 

  10. Cohn JN, Levine TB, Olivari MT, et al.: Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984, 311:819–823.

    Article  PubMed  CAS  Google Scholar 

  11. Mancia G, Grassi G, Giannattasio C, Seravalle G: Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999, 34:724–728.

    PubMed  CAS  Google Scholar 

  12. Palatini P: Elevated heart rate as a predictor of increased cardiovascular morbidity. J Hypertens 1999, 17(suppl 3):S3-S10.

    CAS  Google Scholar 

  13. Head GA: Role of AT1 receptors in the central control of sympathetic vasomotor function. Clin Exp Pharmacol Physiol Suppl 1996, 3:S93-S98.

    PubMed  CAS  Google Scholar 

  14. Hirooka Y, Potts PD, Dampney RA: Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla of the rabbit. Brain Res 1997, 772:107–114.

    Article  PubMed  CAS  Google Scholar 

  15. Murakami H, Liu JL, Zucker IH: Blockade of AT1 receptors enhances baroreflex control of heart rate in conscious rabbits with heart failure. Am J Physiol 1996, 271:R303-R309.

    PubMed  CAS  Google Scholar 

  16. Brooks DP, Ruffolo RR Jr: Pharmacological mechanism of angiotensin II receptor antagonists: implications for the treatment of elevated systolic blood pressure. J Hypertens Suppl 1999, 17:S27-S32.

    PubMed  CAS  Google Scholar 

  17. Cox SL, Ben A, Story DF, Ziogas J: Evidence for the involvement of different receptor subtypes in the pre-and postjunctional actions of angiotensin II at rat sympathetic neuroeffector sites. Br J Pharmacol 1995, 114:1057–1063.

    PubMed  CAS  Google Scholar 

  18. Guimaraes S, Paiva MQ, Moura D: Different receptors for angiotensin II at pre-and postjunctional level of the canine mesenteric and pulmonary arteries. Br J Pharmacol 1998, 124:1207–1212.

    Article  PubMed  CAS  Google Scholar 

  19. Krum H, Goldsmith RL: Effects of pharmacological therapy on autonomic function in patients with chronic heart failure. Editorials Cardiol 1995, 1:167–176.

    Google Scholar 

  20. McKelvie RS, Yusuf S, Pericak D, et al.: Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 1999, 100:1056–1064.

    PubMed  CAS  Google Scholar 

  21. Middlekauff HR: Mechanisms and implications of autonomic nervous system dysfunction in heart failure. Curr Opin Cardiol 1997, 12:265–275.

    Article  PubMed  CAS  Google Scholar 

  22. Grassi G, Turri C, Dell‘Oro R, et al.: Effect of chronic angiotensin converting enzyme inhibition on sympathetic nerve traffic and baroreflex control of the circulation in essential hypertension. J Hypertens 1998, 16(12 Pt 1):1789–1796.

    Article  PubMed  CAS  Google Scholar 

  23. Worck RH, Ibsen H, Frandsen E, Dige-Petersen H: AT 1 receptor blockade and the sympathoadrenal response to insulininduced hypoglycemia in humans. Am J Physiol 1997, 272(3 Pt 1):E415-E421.

    PubMed  CAS  Google Scholar 

  24. Noll G, Wenzel RR, de Marchi S, et al.: Differential effects of captopril and nitrates on muscle sympathetic nerve activity in volunteers. Circulation 1997, 95:2286–2292.

    PubMed  CAS  Google Scholar 

  25. Clemson B, Gaul L, Gubin SS, et al.: Prejunctional angiotensin II receptors. Facilitation of norepinephrine release in the human forearm. J Clin Invest 1994, 93:684–691.

    PubMed  CAS  Google Scholar 

  26. Lyons D, Roy S, Kinirons M, Swift CG: Selective AT 1 receptor antagonism enhances sympathetically mediated vasoconstriction in the human forearm [abstract 6A.5]. Presented at the First International Symposium on Angiotensin II Antagonists, October 1997, London.

  27. Lyons D, Roy S, O‘Byrne S, Swift CG: ACE inhibition: postsynaptic adrenergic sympatholytic action in men. Circulation 1997, 96:911–915.

    PubMed  CAS  Google Scholar 

  28. Ohlstein EH, Brooks DP, Feuerstein GZ, Ruffolo RR Jr: Inhibition of sympathetic outflow by the angiotensin II receptor antagonist, eprosartan, but not by losartan, valsartan or irbesartan: relationship to differences in prejunctional angiotensin II receptor blockade. Pharmacology 1997, 55:244–251.

    Article  PubMed  CAS  Google Scholar 

  29. Balt JC, Mathy MJ, Pfaffendorf M, van Zwieten PA: Inhibition of angiotensin-induced facilitation of sympathetic neurotransmission in the pithed rat: a comparison between losartan, irbesartan, telmisartan and captopril. J Hypertens 2001, 19:465–473.

    Article  PubMed  CAS  Google Scholar 

  30. Balt JC, Mathy MJ, Pfaffendorf M, van Zwieten PA: Blockade of both pre-and post-synaptically located AT1 receptors by valsartan, candesartan, eprosartan and embusartan. Naunyn Schmiedeberg‘s Arch Pharmacol 2001; 363(suppl):R75.

    Google Scholar 

  31. Brooks DP, Ohlstein EH, Ruffolo RR Jr: Pharmacology of eprosartan, an angiotensin II receptor antagonist: exploring hypotheses from clinical data. Am Heart J 1999, 138(3 Pt 2):246–251.

    Article  PubMed  CAS  Google Scholar 

  32. Edwards RM, Aiyar N, Ohlstein EH, et al.: Pharmacological characterization of the nonpeptide angiotensin II receptor antagonist, SK& F 108566. J Pharmacol Exp Ther 1992, 260:175–181.

    PubMed  CAS  Google Scholar 

  33. Brooks DP, Ruffolo RR Jr: Pharmacological mechanism of angiotensin II receptor antagonists: implications for the treatment of elevated systolic blood pressure. J Hypertens Suppl 1999, 17:S27-S32.

    PubMed  CAS  Google Scholar 

  34. Sega R: Efficacy and safety of eprosartan in severe hypertension. Eprosartan Multinational Study Group. Blood Press 1999, 8:114–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krum, H. Differentiation in the Angiotensin II Receptor 1 blocker class on autonomic function. Current Science Inc 3, S17–S23 (2001). https://doi.org/10.1007/s11906-001-0067-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0067-x

Keywords

Navigation