Skip to main content
Log in

New developments in mechanisms of obesity-induced hypertension: Role of adipose tissue

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension develops in almost 60% of obese individuals. Apart from the recent observation of obesity-associated structural changes in kidney structure that may lead to enhanced tubular sodium reabsorbtion, reports of paracrine and hormonal factors derived from adipose tissue have prompted speculations about the role of adipose tissue in the pathophysiology of obesity-induced hypertension. We summarize recent data on leptin’ sympathoexcitatory actions, the possible influence of adipose tissue on atrial natriuretic peptide levels, and the formation of vasoactive substances, such as angiotensin II and nonesterified fatty acids, by adipocytes. The mechanisms discussed herein may contribute to the typical findings in obesity-induced hypertension, including volume expansion, sodium retention, enhanced sympathetic nervous system activity, increased activity of the systemic renin-angiotensin system, low atrial natriuretic peptide levels, and disturbed glucose and insulin metabolism. Together, these data strengthen the hypothesis that adipose tissue is potentially a major regulator of cardiovascular-renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Must A, Spadano J, Coakley EH, et al.: The disease burden associated with overweight and obesity. JAMA 1999, 282:1523–1529.

    Article  PubMed  CAS  Google Scholar 

  2. Mikhail N, Golub MS, Tuck ML: Obesity and hypertension. Prog Cardiovasc Dis 1999, 42:39–58. Currently the most comprehensive review on epidemiologic, clinical, and pathophysiologic aspects of obesity-induced hypertension, from a pioneering group in this field.

    Article  PubMed  CAS  Google Scholar 

  3. Hall JE, Brands MW, Henegar JR: Mechanisms of hypertension and kidney disease in obesity. Ann N Y Acad Sci 1999, 892:91–107.

    Article  PubMed  CAS  Google Scholar 

  4. Fujiwara K, Hayashi K, Matsuda H, et al.: Altered pressurenatriuresis in obese Zucker rats. Hypertension 1999, 33:1470–1475.

    PubMed  CAS  Google Scholar 

  5. Dwyer TM, Banks SA, Alonso-Galicia M, et al.: Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int 2000, 58:721–729.

    Article  PubMed  CAS  Google Scholar 

  6. Dobrian AD, Davies MJ, Prewitt RL, et al.: Development of hypertension in a rat model of diet-induced obesity. Hypertension 2000, 35:1009–1015. This study introduces a dietary animal model of obesity-induced hypertension that allows the dissection of diet- or obesity-related pathophysiologic changes in the rat.

    PubMed  CAS  Google Scholar 

  7. Rumantir MS, Vaz M, Jennings GL, et al.: Neural mechanisms in human obesity-related hypertension. J Hypertens 1999, 17:1125–1133.

    Article  PubMed  CAS  Google Scholar 

  8. Huang WC, Fang TC, Cheng JT: Renal denervation prevents and reverses hyperinsulinemia-induced hypertension in rats. Hypertension 1998, 32:249–254.

    PubMed  CAS  Google Scholar 

  9. Antic V, Kiener-Belforti F, Tempini A, et al.: Role of the sympathetic nervous system during the development of obesity-induced hypertension in rabbits. Am J Hypertens 2000, 13:556–559.

    Article  PubMed  CAS  Google Scholar 

  10. Engeli S, Sharma AM: Adipose-tissue derived factors and cardiovascular-renal dysfunction in obesity. Horm Metab Res 2000, 32: in press.

  11. Masuo K, Mikami H, Ogihara T, et al.: Weight gain-induced blood pressure elevation. Hypertension 2000, 35:1135–1140.

    PubMed  CAS  Google Scholar 

  12. Kunz I, Schorr U, Klaus S, et al.: Resting metabolic rate and substrate use in obesity hypertension. Hypertension 2000, 36:26–32.

    PubMed  CAS  Google Scholar 

  13. Dunbar JC, Hu Y, Lu H: Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 1997, 46:2040–2043.

    Article  PubMed  CAS  Google Scholar 

  14. Shek EW, Brands MW, Hall JE: Chronic leptin infusion increases arterial pressure. Hypertension 1998, 31(suppl):409–414. This long-term study is the most convincing investigation of leptin-induced hypertension to date.

    PubMed  CAS  Google Scholar 

  15. Haynes WG, Morgan DA, Walsh SA, et al.: Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997, 100:270–278.

    PubMed  CAS  Google Scholar 

  16. Mark AL, Shaffer RA, Correia ML, et al.: Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J Hypertens 1999, 17:1949–1953.

    Article  PubMed  CAS  Google Scholar 

  17. Aizawa-Abe M, Ogawa Y, Masuzaki H, et al.: Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest 2000, 105:1243–1252.

    PubMed  CAS  Google Scholar 

  18. Ozata M, Ozdemir IC, Licinio J: Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999, 84:3686–3695. The first human study to support the evidence of leptin’ sympathoexcitatory actions in a rare monogenic human syndrome.

    Article  PubMed  CAS  Google Scholar 

  19. Paolisso G, Manzella D, Montano N, et al.: Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. J Clin Endocrinol Metab 2000, 85:1810–1814.

    Article  PubMed  CAS  Google Scholar 

  20. Frühbeck G: Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes 1999, 48:903–908.

    Article  PubMed  Google Scholar 

  21. Jackson EK, Herzer WA: A comparison of the natriuretic/ diuretic effects of rat vs. human leptin in the rat. Am J Physiol 1999, 277:F761-F765.

    PubMed  CAS  Google Scholar 

  22. Wolf G, Hamann A, Han DC, et al.: Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int 1999, 56:860–872.

    Article  PubMed  CAS  Google Scholar 

  23. Stepniakowski KT, Goodfriend TL, Egan BM: Fatty acids enhance vascular alpha-adrenergic sensitivity. Hypertension 1995, 25:774–778.

    PubMed  CAS  Google Scholar 

  24. Haastrup AT, Stepniakowski KT, Goodfriend TL, et al.:Intralipid enhances alpha1-adrenergic receptor mediated pressor sensitivity. Hypertension 1998, 32:693–698.

    PubMed  CAS  Google Scholar 

  25. Grekin RJ, Dumont CJ, Vollmer AP, et al.: Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am J Physiol 1997, 273:R324-R330.

    PubMed  CAS  Google Scholar 

  26. Steinberg HO, Tarshoby M, Monestel R, et al.: Elevated circulating free fatty acid levels impair endotheliumdependent vasodilation. J Clin Invest 1997, 100:1230–1239.

    PubMed  CAS  Google Scholar 

  27. Davda RK, Stepniakowski KT, Lu G, et al.: Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase Cindependent mechanism. Hypertension 1995, 26:764–770.

    PubMed  CAS  Google Scholar 

  28. Steinberg HO, Paradisi G, Hook G, et al.: Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000, 49:1231–1238. A clinical study combining several investigative methods to further support the influence of NEFA on NO formation and vasodilation in humans.

    Article  PubMed  CAS  Google Scholar 

  29. Schorr U, Blaschke K, Turan S, et al.: Relationship between angiotensinogen, leptin and blood pressure levels in young normotensive men. J Hypertens 1998, 16:1475–1480.

    Article  PubMed  CAS  Google Scholar 

  30. Goodfriend TL, Egan BM, Kelley DE: Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Essent Fatty Acids 1999, 60:401–405.

    Article  PubMed  CAS  Google Scholar 

  31. Cooper R, McFarlane Anderson N, Bennett FI, et al.: ACE, angiotensinogen and obesity: a potential pathway leading to hypertension. J Hum Hypertens 1997, 11:107–111.

    Article  PubMed  CAS  Google Scholar 

  32. Cooper R, Forrester T, Ogunbiyi O, et al.: Angiotensinogen levels and obesity in four black populations. ICSHIB Investigators. J Hypertens 1998, 16:571–575.

    Article  PubMed  CAS  Google Scholar 

  33. Bloem LJ, Manatunga AK, Tewksbury DA, et al.: The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children. J Clin Invest 1995, 95:948–953.

    PubMed  CAS  Google Scholar 

  34. Umemura S, Nyui N, Tamura K, et al.: Plasma angiotensinogen concentrations in obese patients. Am J Hypertens 1997, 10:629–633.

    Article  PubMed  CAS  Google Scholar 

  35. Uckaya G, Ozata M, Sonmez A, et al.: Plasma leptin levels strongly correlate with plasma renin activity in patients with essential hypertension. Horm Metab Res 1999, 31:435–438.

    Article  PubMed  CAS  Google Scholar 

  36. Engeli S, Negrel R, Sharma AM: Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 2000, 35:1270–1277. A comprehensive review of the adipose tissue renin-angiotensin system.

    PubMed  CAS  Google Scholar 

  37. Massiéra F, Murakami K, Fukamizu A, et al.: Angiotensinogen produced by adipose tissue is secreted in blood circulation [abstract]. Int J Obes 2000, 24(suppl 1):S18.

    Google Scholar 

  38. Giacchetti G, Faloia E, Sardu C, et al.: Gene expression of angiotensinogen in adipose tissue of obese patients. Int J Obesity 2000, 24(suppl 2):S142-S143.

    CAS  Google Scholar 

  39. van Harmelen V, Ariapart P, Hoffstedt J, et al.: Increased adipose angiotensinogen gene expression in human obesity. Obes Res 2000, 8:337–341.

    Article  PubMed  Google Scholar 

  40. van Harmelen V, Elizalde M, Ariapart P, et al.: The association of human adipose angiotensinogen gene expression with abdominal fat distribution in obesity. Int J Obes 2000, 24:673–678.

    Article  CAS  Google Scholar 

  41. Jones BH, Standridge MK, Moustaid N: Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997, 138:1512–1519.

    Article  PubMed  CAS  Google Scholar 

  42. Darimont C, Vassaux G, Gaillard D, et al.: In situ microdialysis of prostaglandins in adipose tissue: stimulation of prostacyclin release by angiotensin II. Int J Obes 1994, 18:783–788.

    CAS  Google Scholar 

  43. English V, Cassis L: Facilitation of sympathetic neurotransmission contributes to angiotensin regulation of body weight. J Neural Transm 1999, 106:631–644.

    Article  PubMed  CAS  Google Scholar 

  44. Soltis EE, Cassis LA: Influence of perivascular adipose tissue on rat aortic smooth muscle responsiveness. Clin Exp Hypertens [A] 1991, 13:277–296.

    CAS  Google Scholar 

  45. Dessì-Fulgheri P, Sarzani R, Tamburrini P, et al.: Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens 1997, 15:1695–1699.

    Article  PubMed  Google Scholar 

  46. Dessi-Fulgheri P, Sarzani R, Serenelli M, et al.: Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertension 1999, 33:658–662. This study adds important human experimental details to earlier findings of this group, suggesting an important role of adipose tissue in regulating ANP availability.

    PubMed  CAS  Google Scholar 

  47. Licata G, Volpe M, Scaglione R, et al. Salt-regulating hormones in young normotensive obese subjects: effects of saline load. Hypertension 1994, 23(suppl):I20-I24.

    PubMed  CAS  Google Scholar 

  48. Melo LG, Steinhelper ME, Pang SC, et al.: ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models. Physiol Genomics 2000, 3:45–58.

    PubMed  CAS  Google Scholar 

  49. Sarzani R, Paci VM, Dessi-Fulgheri P, et al.: Comparative analysis of atrial natriuretic peptide receptor expression in rat tissues. J Hypertens 1993, 11(suppl 5):S214-S215.

    CAS  Google Scholar 

  50. R, Paci VM, Zingaretti CM, et al.: Fasting inhibits natriuretic peptides clearance receptor expression in rat adipose tissue. J Hypertens 1995, 13:1241–124.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A.M., Engeli, S. & Pischon, T. New developments in mechanisms of obesity-induced hypertension: Role of adipose tissue. Current Science Inc 3, 152–156 (2001). https://doi.org/10.1007/s11906-001-0030-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0030-x

Keywords

Navigation