Skip to main content
Log in

Nonesterified fatty acids in blood pressure control and cardiovascular complications

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The fact that cardiovascular risk factors cluster among individuals with the insulin resistance syndrome strongly suggests a common pathogenetic denominator. For many years, abnormalities of nonesterified fatty acid metabolism have been implicated in the disturbances of carbohydrate and lipid metabolism that characterize the cluster. However, until more recently, evidence implicating fatty acids in the hemodynamic and vascular abnormalities that affect patients with this syndrome was lacking. p] Observations from epidemiological, clinical, and basic science suggest that fatty acids can raise blood pressure and contribute to the development of hypertension. The effects of fatty acids on blood pressure may be mediated in part by inhibition of endothelial nitric oxide synthase activity and endothelium-dependent vasodilation. Fatty acids can also increase α1-adrenoceptor-mediated vascular reactivity and induce vascular smooth muscle migration and proliferation. The adverse effects of fatty acids appear to be mediated in part through induction of oxidative stress. Fatty acids interact with other components of the risk factor cluster, including increased angiotensin II, to synergistically augment oxidative stress in cultured vascular smooth muscle cells. Oxidative stress is implicated in the pathogenesis of insulin resistance, hypertension, vascular remodeling, and vascular complications. A clearer definition of the specific reactive oxygen signaling pathways involved and interventions aimed at altering these pathways could lead to more rationale antioxidant therapy and improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ferrannini E, Natali A, Bell P, et al.: Insulin resistance and hypersecretion in obesity. J Clin Invest 1997, 100:1166–1173.

    PubMed  CAS  Google Scholar 

  2. Mokdad AH, Serdula MK, Dietz WH, et al.: The spread of the obesity epidemic in the United States, 1991–1998. JAMA 1999, 282:1519–1522. 3. Report of a World Health Organization Consultation on Obesity: Obesity: Preventing and Managing the Global Epidemic. Geneva, June 3-5, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Must A, Spadano J, Coakley EH, et al.: The disease burden associated with overweight and obesity. JAMA 1999, 282:1523–1529.

    Article  PubMed  CAS  Google Scholar 

  4. Allison DB, Fontaine KR, Manson JE, et al.: Annual death attributable to obesity in the United States. JAMA 1999, 282:1530–1538.

    Article  PubMed  CAS  Google Scholar 

  5. Quesenberry CP, Caan B, Jacobson A: Obesity, health services use, and health care costs among members of a health maintenance organization. Arch Intern Med 1998, 158:466–472.

    Article  PubMed  Google Scholar 

  6. Expert Panel on the Identification, Evaluation, and Treatment of Overweight and obesity in Adults: Executive summary of the clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. Arch Intern Med 1998, 148:1855–1867.

    Article  Google Scholar 

  7. Peiris AN, Struve MF, Mueller RA, et al.: Glucose metabolism in obesity: Influence of body fat distribution. J Clin Endocrinol Metab 1988, 67:760–767.

    PubMed  CAS  Google Scholar 

  8. Reaven GM, Hollenbeck C, Jeng CY et al.: Measurement of plasma glucose, free fatty acids, lactate, and insulin for 24 hours in patients with NIDDM. Diabetes 1988, 37:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  9. Jensen MD, Haymond MW, Rizza RA, et al.: Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989, 83:1168–1173.

    PubMed  CAS  Google Scholar 

  10. Roust LR, Jensen MD: Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes 1993, 42:1567–1573.

    Article  PubMed  CAS  Google Scholar 

  11. Egan BM, Stepniakowski KT: Evidence linking fatty acids, the risk factor cluster, and vascular pathophysiology: implications for the diabetic hypertensive patient. In Diabetes and Vascular Disease. Edited by Sowers JR. Tocowa, NJ: Humana Press; 1996:157–172.

    Google Scholar 

  12. Egan BM, Lu G, Greene EL: Vascular effects of non-esterified fatty acids: Implications for the cardiovascular risk factor cluster. Prostagland Leukotrien Essen Fatty Acids 1999, 60:411–420.

    Article  CAS  Google Scholar 

  13. Strömblad G, Björntorp P: Reduced hepatic insulin clearance in rats with dietary-induced obesity. Metabolism 1986, 35:323–327.

    Article  PubMed  Google Scholar 

  14. Peiris AN, Mueller RA, Smith GA, et al.: Splanchnic insulin metabolism in obesity: influence of body fat distribution. J Clin Invest 1986, 78:1648–1657.

    PubMed  CAS  Google Scholar 

  15. Ferrannini E, Barrett EJ, Bevilacqua S: Effect of fatty acids on glucose production and utilization in man. J Clin Invest 1983, 72:1737–1747.

    PubMed  CAS  Google Scholar 

  16. Cabezas MC, deBruin TWA, deValk HW, et al.: Impaired fatty acid metabolism in familial combined hyperlipidemia: A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest 1993, 92:160–168.

    CAS  Google Scholar 

  17. Randle PJ, Garland PB, Hales CN, Newsholme EA: The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1:785–789.

    Article  PubMed  CAS  Google Scholar 

  18. Shimabukuro M, Zhou YT, Levi M, Unger RH: Fatty acid-induced b cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci U S A 1998, 95:2498–2502.

    Article  PubMed  CAS  Google Scholar 

  19. Peiris A, Sothmann M, Hoffmann R, et al.: Adiposity, fat distribution and cardiovascular risk. Ann Intern Med 1989, 110:867–872.

    PubMed  CAS  Google Scholar 

  20. Egan BM, Hennes MMI, O’Shaughnessy IM, et al.: Obesity hypertension is more closely related to impairment of insulin’ fatty acid than glucose lowering action. Hypertension 1996, 27[part 2]:723–728.

    PubMed  CAS  Google Scholar 

  21. Chen Y-DI, Golay A, Swislocki ALM, Reaven GM: Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulindependent diabetes mellitus. J Clin Endocrinol Metab 1987, 64:17–21.

    Article  PubMed  CAS  Google Scholar 

  22. Bülow J, Madsen, Hojgaard L: Reversibility of the effects on local circulation of high lipid concentrations in blood. Scand J Clin Lab Invest 1990, 50:291–296.

    PubMed  Google Scholar 

  23. Williams RR, Hunt SC, Hopkins PN, et al.: Familial dylipidemic hypertension: evidence from 58 Utah families for a syndrome present in ∼12% of patients with essential hypertension. JAMA 1988, 259:3579–3586.

    Article  PubMed  CAS  Google Scholar 

  24. Grekin RJ, Dumont CJ, Vollmer AP, et al.: Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am J Physiol 1997, 273:R324-R330.

    PubMed  CAS  Google Scholar 

  25. Fagot-Campagna A, Balkau B, Simon D, et al.: High free fatty acid concentration: An independent risk factor for hypertension in the Paris Prospective Study. Internat J Epidemiol 1998, 27:808–813. This original paper showed that fatty acids were independently predictive of the development of hypertension.

    Article  CAS  Google Scholar 

  26. Egan B, Panis R, Hinderliter A, et al.: Mechanism of increased a-adrenergic vasoconstriction in human essential hypertension. J Clin Invest 1987, 80:812–817.

    PubMed  CAS  Google Scholar 

  27. Stepniakowski KT, Goodfriend TL, Egan BM: Fatty acids enhance neurovascular reflex responses by effects on α 1 -adrenoceptors. Am J Physiol 1996, 270:R1340-R1346.

    PubMed  CAS  Google Scholar 

  28. Stepniakowski KT, Sallee FR, Goodfriend TL, et al.: Fatty acids enhance neurovascular reflex responses by effects on α 1 -adrenoceptors. Am J Physiol 1996, 270:R1340-R1346.

    PubMed  CAS  Google Scholar 

  29. Haastrup T, Stepniakowski KT, Goodfriend TL, Egan BM: Lipids enhance a1-adrenergic receptor mediated pressor reactivity. Hypertension 1998, 32:693–698.

    PubMed  CAS  Google Scholar 

  30. Stern M, Haffner S: Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis 1986, 6:123–129.

    PubMed  CAS  Google Scholar 

  31. Rocchini AP, Moorehead CP, DeRemer S, Blondi D:Pathogenesis of weight related changes of blood pressure in dogs. Hypertension 1989, 13:922–928.

    PubMed  CAS  Google Scholar 

  32. Hall JE, Brands MW, Dixon WN, Smith MJJr: Obesity-induced hypertension: renal function and systemic hemodynamics. Hypertension 1993, 22:292–299.

    PubMed  CAS  Google Scholar 

  33. Sowers JR, Nyby M, Stern N, et al.: Blood pressure and hormone changes associated with weight reduction in the obese. Hypertension 1982, 4:686–691.

    PubMed  CAS  Google Scholar 

  34. Davda RK, Stepniakowski KT, Lu G, et al.: Oleic acid inhibits endothelial cell nitric oxide synthase by a PKC-independent mechanism. Hypertension 1995, 26:764–770.

    PubMed  CAS  Google Scholar 

  35. Steinberg HO, Tarshoby M, Monestel R, et al.: Elevated circulating free fatty acid levels impair endotheliumdependent vasodilation. J Clin Invest 1997, 100:1230–1239.

    PubMed  CAS  Google Scholar 

  36. Lu G, Greene EL, Toshi JI, Egan BM: Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 1998, 32:1003–1010. This research demonstrated not only that fatty acids induced the genesis of reactive oxygen in vascular smooth muscle cells but also that these molecules were critical in the mitogenic response to these lipids.

    PubMed  CAS  Google Scholar 

  37. Rajagopalan S, Kurz S, Munzel T, et al.: Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J Clin Invest 1996, 97:1916–1923.

    PubMed  CAS  Google Scholar 

  38. Nosratola D, Vaziri D, Wang XQ, et al.: Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 2000, 36:142–146. These authors generated provocative data that demonstrated that oxidative stress could induce a marked increase of arterial blood pressure.

    Google Scholar 

  39. Stojiljkovic MP, Zhang D, Lopes HF, et al.: Hemodynamic effects of lipids in humans. Am J Physiol 2001, in press.

  40. Sacks FM: Dietary fats and BP. A critical review of the evidence. Nutrition Rev 1989, 47:291–300.

    CAS  Google Scholar 

  41. Sandström B, Marckmann P, Bindslev N: An eight-month controlled study of a low-fat high-fibre diet: effects on blood lipids and BP in healthy young subjects. Eur J Clin Nutr 1992, 46:95–109.

    PubMed  Google Scholar 

  42. Iacono JM, Dougherty RM, Puski P: Reduction of blood pressure associated with dietary polyunsaturated fat. Hypertension 1982, 4(suppl III):34–42.

    CAS  Google Scholar 

  43. Straznicky NE, Louis WJ, McGrade P, Howes LG: The effects of dietary lipid modification on BP, cardiovascular reactivity and sympathetic activity in man. J Hypertension 1993, 11:427–437.

    Article  CAS  Google Scholar 

  44. Rocchini AP, Mao HZ, Babu K, et al.: Clonidine prevents insulin resistance and hypertension in obese dogs. Hypertension 1999, 33[1 Pt 2]:548–553.

    PubMed  CAS  Google Scholar 

  45. Hall JE: Mechanisms of abnormal renal sodium handling in obesity hypertension. Am J Hypertens 1997, 10[5 Pt 2]:49S-55S.

    Article  PubMed  CAS  Google Scholar 

  46. Appel LJ, Moore TJ, Obarzanek E, et al.: A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med 1997, 336:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  47. Whelton PK, Kumanyika SK, Cook NR, et al.: Efficacy of nonpharmacologic interventions in adults with highnormal blood pressure: results from Phase 1 of the Trials of Hypertension Prevention. Trials of Hypertension Prevention Collaborative Group. Am J Clin Nutr 1997, 65[2 suppl]:652S-660S.

    PubMed  CAS  Google Scholar 

  48. Ordway RW, Singer JJ, Walsh JV: Direct regulation of ion channels by fatty acids. Trends Neurosci 1991, 14:96–100.

    Article  PubMed  CAS  Google Scholar 

  49. Lu G, Morinelli TA, Meier KA, et al.: Oleic acid-induced mitogenic signaling in vascular smooth muscle cells: a role for protein kinase C. Circ Res 1996, 79:611–618.

    PubMed  CAS  Google Scholar 

  50. Lu G, Meier KE, Jaffa AA, et al.: Oleic acid and angiotensin induce a synergistic mitogenic response. Hypertension 1998, 31:978–985.

    PubMed  CAS  Google Scholar 

  51. Greene EL, Lu G, Zhang D, Egan BM: Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension 2001, in press.

  52. Touny SE, Khan W, Hannun Y: Regulation of platelet protein kinase C by oleic acid. J Biol Chem 1990, 265:16437–16443.

    PubMed  Google Scholar 

  53. Khan WA, Blobe G, Halpern A, et al.: Selective regulation of PKC isozymes by oleic acid in human platelets. J Biol Chem 1993, 268:5063–5068.

    PubMed  CAS  Google Scholar 

  54. Osol G, Laher I, Cipolla M: Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation. Circ Res 1991, 68:359–367.

    PubMed  CAS  Google Scholar 

  55. Dzau VJ, Gibbons GH: Endothelium and growth factors in vascular remodeling in hypertension. Hypertension 1991, 18[suppl III]:III115-III121.

    PubMed  CAS  Google Scholar 

  56. Morrison KJ, Pollock D: Impairment of relaxation to acetylcholine and nitric oxide by a phorbol ester in rat isolated aorta. Br J Pharmacol 1990, 101:432–436.

    PubMed  CAS  Google Scholar 

  57. Doctrow SR, Folkman J: Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens. J Cell Biol 1987, 104:679–687.

    Article  PubMed  CAS  Google Scholar 

  58. Heydrick SJ, Ruderman NB, Kurowski TG, et al.: Enhanced stimulation of diacylglycerol and lipid synthesis by insulin in denervated muscle: Altered PKC activity and possible link to insulin resistance. Diabetes 1991, 40:1707–1711.

    Article  PubMed  CAS  Google Scholar 

  59. Nair SC, Toshkov IA, Yaktine AL, et al.: Dietary energy restriction-induced modulation of protein kinase zeta isozyme in the hamster pancreas. Mol Carcinog 1994, 14:10–15.

    Article  Google Scholar 

  60. Considine RV, Nyce MR, Allen LE, et al.: Protein kinase C is increased in the liver of humans and rats with non-insulindependent diabetes mellitus. An alteration not due to hyperglycemia. J Clin Invest 1995, 95:2938–2944.

    PubMed  CAS  Google Scholar 

  61. Nakanishi H, Exton JH: Purfication and characterization of the zeta isoform of protein kinase C from bovine kidney. J Biol Chem 1992, 267:16347–16354.

    PubMed  CAS  Google Scholar 

  62. Liao D-F, Monia B, Dean N, Berk BC: Protein kinase C-zeta mediates angiotensin II activation of ERK-1 and -2 in vascular smooth muscle cells. J Biol Chem 1997, 272:6146–6150.

    Article  PubMed  CAS  Google Scholar 

  63. Berra E, Dioa-Meco MT, Dominguez I, et al.: Protein kinase C zeta is critical for mitogenic signal transduction. Cell 1993, 74:555–563.

    Article  PubMed  CAS  Google Scholar 

  64. Hirata K, Kuroda R, Sakoda T, et al.: Inhibition of endothelial nitric oxide synthase activity by protein kinase C. Hypertension 1995, 25:180–185.

    PubMed  CAS  Google Scholar 

  65. Morrison KJ, Pollock D: Impairment of relaxation to acetylcholine and nitric oxide by a phorbol ester in rat isolated aorta. Br J Pharmacol 1990, 101:432–436.

    PubMed  CAS  Google Scholar 

  66. Cox JA, Jeng AY, Sharkey NA, et al.: Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J Clin Invest 1985, 76:1932–1938.

    PubMed  CAS  Google Scholar 

  67. Myers MA, McPhail LC, Snyderman R: Redistribution of protein kinase C activity in human monocytes: correlation with activation of the respiratory burst. J Immunol 1985, 135:3411–3416.

    PubMed  CAS  Google Scholar 

  68. McPhail LC, Clayton CC, Snyderman R: A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science 1984, 224:622–625.

    Article  PubMed  CAS  Google Scholar 

  69. Fiorani M, Cantoni O, Tasinato A, et al.: Hydrogen peroxide and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms. Biochem Biophys Acta 1995, 1269:98–104.

    Article  PubMed  Google Scholar 

  70. Baas AS, Berk BC: Differential activation of mitogen-activated protein kinases by H2O2 and O2-in vascular smooth muscle cells. Circ Res 1995, 77:29–36.

    PubMed  CAS  Google Scholar 

  71. Delafontaine P, Ku L: Reactive oxygen species stimulate insulin-like growth factor I synthesis in vascular smooth muscle cells. Cardiov Res 1997, 33:216–222.

    Article  CAS  Google Scholar 

  72. Gumusel B, Tel BC, Demirdamar R, Sahin-Erdemli I: Reactive oxygen species-induced impairment of endotheliumdependent relaxation in rat aortic rings: protection by L-arginine. Eur J Pharmacol 1996, 306:107–112.

    Article  PubMed  CAS  Google Scholar 

  73. Puri PL, Avantaggiati ML, Burgio VL, et al.: Reactive oxygen intermediates are involved in the intracellular transduction of angiotensin II signal in C2C12 cells. Ann NY Acad Sci 1995, 752:394–405.

    Article  PubMed  CAS  Google Scholar 

  74. Rajagopalan S, Meng XP, Ramasamy S, et al.: Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 1996, 98:2572–2579.

    PubMed  CAS  Google Scholar 

  75. Galis ZS, Sukhova G, Lark MW, Libby P: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994, 94:2493–2503.

    Article  PubMed  CAS  Google Scholar 

  76. Puri PL, Avantaggiati ML, Burgio VL, et al.: Reactive oxygen intermediates mediate angiotensin II-induced c-jun/c-fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells. J Biol Chem 1995, 270:22129–22134.

    Article  PubMed  CAS  Google Scholar 

  77. Ushio-Fukai M, Zafari AM, Fukui T, et al.: p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 1996, 271:23317–23321.

    Article  PubMed  CAS  Google Scholar 

  78. Ushio-Fukai M, Alexander RW, Akers M, Griendling KK: p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. J Biol Chem 1998, 273:15022–15029.

    Article  PubMed  CAS  Google Scholar 

  79. Egan BM, Stepniakowski K, Goodfriend TL: Renin and aldosterone are higher and the hyperinsulinemic effects of salt restriction greater in subjects with risk factor clustering. Am J Hypertens 1994, 7:886–893.

    PubMed  CAS  Google Scholar 

  80. Kunsch C, Medford RM: Oxidative stress as a regulator of gene expression in the vasculature. Circ Res 1999, 85:753–766.

    PubMed  CAS  Google Scholar 

  81. Egan BM, Greene EL, Goodfriend TL: Insulin resistance and cardiovascular disease [invited review]. Am J Hypertens, in press.

  82. Ward NE, Pierce DS, Chung SE, et al.: Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 1998, 273:12558–12566.

    Article  PubMed  CAS  Google Scholar 

  83. Rudich A, Kozlovsky N, Patashnik R, Bashan N: Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol 1997, 272:E935-E940.

    PubMed  CAS  Google Scholar 

  84. Paolisso G, D’Amopre A, Volpe C, et al.: Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. Metabolism 1994, 43:1426–1429.

    Article  PubMed  CAS  Google Scholar 

  85. Sano T, Umeda F, Hashimoto T, et al.: Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 1998, 41:1355–1360.

    Article  PubMed  CAS  Google Scholar 

  86. Jain SK, McVie R, Jaramillo JJ, et al.: Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type 1 diabetic patietns. J Am Coll Nutr 1996, 15:458–461.

    PubMed  CAS  Google Scholar 

  87. Roberts LJ, Morrow JD: Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Rad Biol Med 2000, 28:505–518.

    Article  PubMed  CAS  Google Scholar 

  88. Zhang D, Haastrup A, Morrow J, Egan B: Intralipid raises plasma 8-iso-PGF2a concentrations in normal volunteers. J Hypertension 2000, 18[suppl 4]:S128.

    Google Scholar 

  89. Yusuf S, Dagenais G, Pogue J, et al.: Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study. N Engl J Med 2000, 342:154–160.

    Article  PubMed  CAS  Google Scholar 

  90. Keli SO, Hertog MGL, Feskens EJM, Kromhout D: Dietary flavonoids, antioxidant vitamins and incidence of stroke. Arch Intern Med 1996, 154:637–642.

    Article  Google Scholar 

  91. Geleijnse JM, Launer LJ, Hofman A, et al.: Tea flavonoids may protect against atherosclerosis. The Rotterdam Study. Arch Intern Med 1999, 159:2170–2174.

    Article  PubMed  CAS  Google Scholar 

  92. Joshipura KJ, Ascherio A, Manson JE, et al.: Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 1999, 282:1233–1239.

    Article  PubMed  CAS  Google Scholar 

  93. Ascherio A, Rimm EB, Hernan MA, et al.: Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Ann Intern Med 1999, 130:963–970.

    PubMed  CAS  Google Scholar 

  94. Greene E, Zhang D, Lu G, Egan B: Low-dose N-acetyl-cysteine enhances the mitogenic response to oleic acid in vascular smooth muscle cells. J Hypertension 2000, 18[suppl 4]:S130.

    Google Scholar 

  95. Bakker SJ, Jzerman RG, Teerlink T, et al.: Cytosolic triglycerides and oxidative stress in central obesity: the missing link between excessive atherosclerosis, endothelial dysfunction, and beta-cell failure? Atherosclerosis 2000, 148:17–21.

    Article  PubMed  CAS  Google Scholar 

  96. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ: Development of hypertension in a rat model of diet-induced obesity. Hypertension 2000, 35:1009–1015.

    PubMed  CAS  Google Scholar 

  97. Halliwell B: Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutrition Rev 1999, 57:104–113.

    CAS  Google Scholar 

  98. Hennes MM, O’Shaughnessy IM, et al.: Insulin resistant lipolysis in abdominally-obese hypertensives: role of the renin-angiotensin system. Hypertension 1996, 28:120–126.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egan, B.M., Greene, E.L. & Goodfriend, T.L. Nonesterified fatty acids in blood pressure control and cardiovascular complications. Current Science Inc 3, 107–116 (2001). https://doi.org/10.1007/s11906-001-0021-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0021-y

Keywords

Navigation