Skip to main content

Advertisement

Log in

CD4+ t-cell depletion in hiv infection: Killed by friendly fire?

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Recent studies have emphasized the role of a chronic, generalized activation of the immune system as a prominent cause of CD4+ T-cell depletion in HIV-infected patients. The HIV-induced immune activation is a strong predictor of disease progression in humans, and lack of immune activation is a key feature of nonpathogenic simian immunodeficiency virus (SIV) infection of natural hosts. The mechanisms by which immune activation induces CD4+ T-cell depletion are still incompletely understood, but likely involve changes in the complex dynamics of the naive, memory, and effector subsets of T cells. A better understanding of how HIV-induced immune activation leads to CD4+ T-cell depletion may provide new targets for immune-based interventions that could be used, in addition to standard antiretroviral therapy, to slow disease progression in HIV-infected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dalgleish AG, Beverley PC, Clapham PR, et al.: The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984, 312:763–767.

    Article  CAS  PubMed  Google Scholar 

  2. Klatzmann D, Champagne E, Chamaret S, et al.: T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 1984, 312:767–768.

    Article  CAS  PubMed  Google Scholar 

  3. Fauci AS: HIV and AIDS: 20 years of science. Nat Med 2003, 9:839–843.

    Article  CAS  PubMed  Google Scholar 

  4. Mellors JW, Kingsley LA, Rinaldo CR, Jr., et al.: Quantitation of HIV-1 RNA in plasma predicts outcome after seroconversion. Ann Intern Med 1995, 122:573–579.

    CAS  PubMed  Google Scholar 

  5. Pomerantz RJ, Horn DL: Twenty years of therapy for HIV-1 infection. Nat Med 2003, 9:867–873.

    Article  CAS  PubMed  Google Scholar 

  6. Finkel TH, Tudor-Williams, Banda NK, et al.: Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes. Nat Med 1995, 1:129–34.

    Article  CAS  PubMed  Google Scholar 

  7. Muro-Cacho CA, Pantaleo G, Fauci AS: Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol 1995, 154:5555–5566.

    CAS  PubMed  Google Scholar 

  8. Haase AT: Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 1999, 17:625–656.

    Article  CAS  PubMed  Google Scholar 

  9. Hellerstein M, Hanley MB, Cesar D, et al.: Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat Med 1999, 5:83–89.

    Article  CAS  PubMed  Google Scholar 

  10. Hellerstein MK, Hoh RA, Hanley MB, et al.: Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J Clin Invest 2003, 112:956–966. By an innovative method of deuterated water and glucose labeling of cycling cells, this article defines subsets of proliferating T cells in vivo and separately describes their turnover rates as relevant to HIV infection and disease state.

    CAS  PubMed  Google Scholar 

  11. Meyaard L, Otto SA, Jonker RR, et al.: Programmed death of T cells in HIV-1 infection. Science 1992, 257:217–219.

    Article  CAS  PubMed  Google Scholar 

  12. Gougeon ML, Lecoeur H, Dulioust A, et al.: Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression. J Immunol 1996, 156:3509–3520.

    CAS  PubMed  Google Scholar 

  13. Badley AD, Pilon AA, Landay A, Lynch DH: Mechanisms of HIV-associated lymphocyte apoptosis. Blood 2000, 96:2951–2964.

    CAS  PubMed  Google Scholar 

  14. Leng Q, Borkow G, Weisman Z, et al.: Immune activation correlates better than HIV plasma viral load with CD4 T-cell decline during HIV infection. J Acquir Immune Defic Syndr 2001, 27:389–397.

    CAS  PubMed  Google Scholar 

  15. Sousa AE, Carneiro J, Meier-Schellersheim M, et al.: CD4 T-cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J Immunol 2002, 169:3400–3406. This article normalizes HIV-1 and HIV-2 disease progression by CD4 depletion level and convincingly shows that chronic immune activation levels determine the extent of CD4 depletion, regardless of the viral load.

    CAS  PubMed  Google Scholar 

  16. Hazenberg MD, Otto SA, van Benthem BH, et al.: Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 2003, 17:1881–1888.

    Article  PubMed  Google Scholar 

  17. Giorgi JV, Hultin LE, McKeating JA, et al.: Shorter survival in advanced human immunodeficiency virus type one infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999, 179:859–870.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Cumberland WG, Hultin LE, et al.: Elevated CD38 antigen expression on CD8+ T cells is a stronger marker for the risk of chronic HIV disease progression to AIDS and death in the Multicenter AIDS Cohort Study than CD4+ cell count, soluble immune activation markers, or combinations of HLA-DR and CD38 expression. J Acquir Immune Defic Syndr Hum Retrovirol 1997, 16:83–92.

    CAS  PubMed  Google Scholar 

  19. Giorgi JV, Lyles RH, Matud JL, et al.: Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J Acquir Immune Defic Syndr 2002, 29:346–355.

    PubMed  Google Scholar 

  20. Hazenberg MD, Hamann D, Schuitemaker H, Miedema F: T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol 2000, 1:285–289.

    Article  CAS  PubMed  Google Scholar 

  21. McCune JM: The dynamics of CD4+ T-cell depletion in HIV disease. Nature 2001, 410:974–989.

    Article  CAS  PubMed  Google Scholar 

  22. Grossman Z, Meier-Schellersheim M, Sousa A, et al.: CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat Med 2002, 8:319–323. This review discusses the important role that HIV-induced immune activation plays in driving both viral replication and CD4+ T cell depletion.

    Article  CAS  PubMed  Google Scholar 

  23. Silvestri G and Feinberg MB: Turnover of lymphocytes and conceptual paradigms in HIV infection. J Clin Invest 2003, 112:821–824.

    CAS  PubMed  Google Scholar 

  24. Roederer M: Getting to the HAART of T cell dynamics. Nat Med 1998, 4:145–146.

    Article  CAS  PubMed  Google Scholar 

  25. Koup RA, Safrit JT, Cao Y, et al.: Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 1994, 68:4650–4655.

    CAS  PubMed  Google Scholar 

  26. Amara RR, Villinger F, Altman JD, et al.: Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 2001, 292:69–74.

    Article  CAS  PubMed  Google Scholar 

  27. Barouch DH, Santra S, Schmitz JE, et al.: Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokineaugmented DNA vaccination. Science 2000, 290:486–492.

    Article  CAS  PubMed  Google Scholar 

  28. Matano T, Shibata R, Siemon C, et al.: Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol 1998, 72:164–169.

    CAS  PubMed  Google Scholar 

  29. Jin X, Bauer DE, Tuttleton SE, et al.: Dramatic rise in plasma viremia after CD8(+) T-cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999, 189:991–998.

    Article  CAS  PubMed  Google Scholar 

  30. Schmitz JE, Kuroda MJ, Santra S, et al.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999, 283:857–860.

    Article  CAS  PubMed  Google Scholar 

  31. Lifson JD, Rossio JL, Piatak M, Jr., et al.: Role of CD8(+) lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J Virol 2001, 75:10187–10199.

    Article  CAS  PubMed  Google Scholar 

  32. Garber DA, Silvestri G, Feinberg MB: Prospects for an AIDS vaccine: three big questions, no easy answers. Lancet Infect Dis 2004, 4:397–413.

    Article  CAS  PubMed  Google Scholar 

  33. Stevenson M: HIV-1 pathogenesis. Nat Med 2003, 9:853–860.

    Article  CAS  PubMed  Google Scholar 

  34. Douek DC, Brenchley JM, Betts MR, et al.: HIV preferentially infects HIV-specific CD4+ T cells. Nature 2002, 417:95–98.

    Article  CAS  PubMed  Google Scholar 

  35. Seder RA, Ahmed R: Similarities and differences in CD4+ and CD8+ effector and memory T-cell generation. Nat Immunol 2003, 4:835–842.

    Article  CAS  PubMed  Google Scholar 

  36. Wherry EJ, Teichgraber V, Becker TC, et al.: Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003, 4:225–234.

    Article  CAS  PubMed  Google Scholar 

  37. Migueles SA, Laborico AC, Shupert WL, et al.: HIV-specific CD8+ T-cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 2002, 3:1061–1068.

    Article  CAS  PubMed  Google Scholar 

  38. Sachsenberg N, Perelson AS, Yerly S, et al.: Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J Exp Med 1998, 187:1295–1303.

    Article  CAS  PubMed  Google Scholar 

  39. Orendi JM, Bloem AC, Borleffs JC, et al.: Activation and cell cycle antigens in CD4+ and CD8+ T cells correlate with plasma human immunodeficiency virus (HIV-1) RNA level in HIV-1 infection. J Infect Dis 1998, 178:1279–1287.

    Article  CAS  PubMed  Google Scholar 

  40. Hazenberg MD, Stuart JW, Otto SA, et al.: T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood 2000, 95:249–255. This article elegantly demonstrates that the increased T-cell proliferation and death associated with HIV infection is caused by the chronic level of T-cell immune activation rather than by a compensatory homeostatic mechanism aimed at replacing the CD4+ T cells directly killed by the virus.

    CAS  PubMed  Google Scholar 

  41. Kovacs JA, Lempicki RA, Sidorov IA, et al.: Identification of dynamically distinct subpopulations of T lymphocytes that are differentially affected by HIV. J Exp Med 2001, 194:1731–1741.

    Article  CAS  PubMed  Google Scholar 

  42. Mohri H, Perelson AS, Tung K, et al.: Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J Exp Med 2001, 194:1277–1287.

    Article  CAS  PubMed  Google Scholar 

  43. Valdez H, Connick E, Smith KY, et al.: Limited immune restoration after 3 years’ suppression of HIV-1 replication in patients with moderately advanced disease. AIDS 2002, 16:1859–1866.

    Article  CAS  PubMed  Google Scholar 

  44. Lempicki RA, Kovacs JA, Baseler MW, et al.: Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T-cell turnover in HIV-infected patients. Proc Natl Acad Sci USA 2000, 97:13778–13783.

    Article  CAS  PubMed  Google Scholar 

  45. Bentwich Z, Kalinkovich A, Weisman Z, Grossman Z: Immune activation in the context of HIV infection. Clin Exp Immunol 1998, 111:1–2.

    Article  CAS  PubMed  Google Scholar 

  46. Carbone J, Gil J, Benito JM, et al.: Increased levels of activated subsets of CD4 T cells add to the prognostic value of low CD4 T-cell counts in a cohort of HIV-infected drug users. AIDS 2000, 14:2823–2829.

    Article  CAS  PubMed  Google Scholar 

  47. Spritzler J, Mildvan D, Russo A, et al.: Can immune markers predict subsequent discordance between immunologic and virologic responses to antiretroviral therapy? Adult AIDS Clinical Trials Group. Clin Infect Dis 2003, 37:551–558.

    Article  PubMed  Google Scholar 

  48. Deeks SG, Kitchen CM, Liu L, et al.: Immune activation set point during early HIV infection predicts subsequent CD4+ T-cell changes independent of viral load. Blood 2004, 104:942–947. This study robustly correlates the levels of immune activation in early infection with later markers of disease progression and identifies a pathogenic role of immune activation even during the acute phase of HIV infection.

    Article  CAS  PubMed  Google Scholar 

  49. Mildvan D, Bosch RJ, Kim RS, et al.: Immunophenotypic markers and antiretroviral therapy (IMART): T-cell activation and maturation help predict treatment response. J Infect Dis 2004, 189:1811–1820.

    Article  CAS  PubMed  Google Scholar 

  50. Lederman M, Connick E, Landay A, et al.: Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. J infect Dis 1998, 178:70–79.

    CAS  PubMed  Google Scholar 

  51. Bisset LR, Cone RW, Huber W, et al.: Highly active antiretroviral therapy during early HIV infection reverses T-cell activation and maturation abnormalities. Swiss HIV-Cohort Study. AIDS 1998, 12:2115–2123.

    Article  CAS  PubMed  Google Scholar 

  52. Bucy RP, Hockett RD, Derdeyn CA, et al.: Initial increase in blood CD4(+) lymphocytes after HIV-antiretroviral therapy reflects redistribution from lymphoid tissues. J Clin Invest 1999, 103:1391–1398.

    Article  CAS  PubMed  Google Scholar 

  53. Hunt PW, Martin JN, Sinclair E, et al.: T-cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003, 187:1534–1543.

    Article  CAS  PubMed  Google Scholar 

  54. Paiardini M, Cervasi B, Galati D, et al.: Early correction of cellcycle perturbations predicts the immunological response to therapy in HIV-infected patients. AIDS 2004, 18:393–402.

    Article  CAS  PubMed  Google Scholar 

  55. Deeks SG, Hoh R, Grant RM, et al.: CD4+ T-cell kinetics and activation in human immunodeficiency virus-infected patients who remain viremic despite long-term treatment with protease inhibitor-based therapy. J Infect Dis 2002, 185:315–323.

    Article  CAS  PubMed  Google Scholar 

  56. Rey-Cuille MA, Berthier JL, Bomsel-Demontoy MC, et al.: Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. J Virol 1998, 72:3872–3886.

    CAS  PubMed  Google Scholar 

  57. Chakrabarti LA, Lewin SR, Zhang L, et al.: Normal T-cell turnover in sooty mangabeys harboring active simian immunodeficiency virus infection. J Virol 2000, 74:1209–1223.

    Article  CAS  PubMed  Google Scholar 

  58. Silvestri G, Sodora DL, Koup RA, et al.: Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia. Immunity 2003, 18:441–452. This article provides the first detailed immunological analysis of the nonpathogenic SIV infection in an African natural host monkey species, (ie, the sooty mangabey). The key finding is that the lack of chronic immune activation and bystander T-cell apoptosis is the main determinant of the lack of disease progression despite high levels of viral replication.

    Article  CAS  PubMed  Google Scholar 

  59. Silvestri G, Fedanov A, Germon S, et al.: Divergent host responses during primary SIV infection of natural sooty mangabey and nonnatural rhesus macaque hosts. J Virol 2005. In press.

  60. Tesselaar K, Arens R, van Schijndel GM, et al.: Lethal T-cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat Immunol 2003, 4:49–54. Describes a mouse model whereby chronic T-cell activation is induced by transgenic CD70 expression and unchecked CD27-mediated signaling. These mice develop an AIDS-like syndrome in the absence of any relevant viral infection.

    Article  CAS  PubMed  Google Scholar 

  61. Tesselaar K, Gravestein LA, van Schijndel GM, et al.: Characterization of murine CD70, the ligand of the TNF receptor family member CD27. J Immunol 1997, 159:4959–4965.

    CAS  PubMed  Google Scholar 

  62. Hazenberg MD: Chronic immune activation leads to T-cell depletion: A mouse model for HIV pathogenesis [abstract]. Presented at the Conference on Retroviruses and Opportunistic Infections (CROI). San Francisco, CA, February 8–11, 2004.

  63. Calabrese LH, Lederman MM, Spritzler J, et al.: Placebo-controlled trial of cyclosporin-A in HIV-1 disease: implications for solid organ transplantation. J Acquir Immune Defic Syndr 2002, 29:356–362.

    CAS  PubMed  Google Scholar 

  64. Chapuis AG, Paolo Rizzardi G, D’Agostino C, et al.: Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nat Med 2000, 6:762–768.

    Article  CAS  PubMed  Google Scholar 

  65. Marrack P, Bender J, Hildeman D, et al.: Homeostasis of alpha beta TCR+ T cells. Nat Immunol 2000, 1:107–111.

    Article  CAS  PubMed  Google Scholar 

  66. Kaech SM, Tan JT, Wherry EJ, et al.: Selective expression of the interleukin-7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 2003, 4:1191–1198. This article describes in the murine model of LCMV infection the pivotal role of IL-7 in promoting the differentiation of CD8+ effector T cells into fully functional memory T cells. As such, it provides the theoretical basis for the use of IL-7 as an immuno-balancing agent in HIV infection.

    Article  CAS  PubMed  Google Scholar 

  67. Blattman J, Grayson J, Wherry E, et al.: Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med 2003, 9:540–547.

    Article  CAS  PubMed  Google Scholar 

  68. Davey RT, Jr., Murphy RL, Graziano FM, et al.: Immunologic and virologic effects of subcutaneous interleukin-2 in combination with antiretroviral therapy: A randomized controlled trial. Jama 2000, 284:183–189.

    Article  CAS  PubMed  Google Scholar 

  69. Kovacs J, Vogel S, Metcalf J, et al.: Interleukin-2 induced immune effects in human immunodeficiency virus-infected patients receiving intermittent interleukin-2 immunotherapy. Eur J Immunol 2001, 31:1351–1360.

    Article  CAS  PubMed  Google Scholar 

  70. Sereti I, Anthony K, Martinez-Wilson H, et al.: Interleukin-2-induced CD4+ T-cell expansion in HIV-infected patients is associated with long-term decreases in T-cell proliferation. Blood 2004, 104:775–780.

    Article  CAS  PubMed  Google Scholar 

  71. Fry T, Moniuszko M, Creekmore S, et al.: Interleukin-7 therapy dramatically alters peripheral T-cell homeostasis in normal and SIV-infected nonhuman primates. Blood 2003, 101:2294–2299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moanna, A., Dunham, R., Paiardini, M. et al. CD4+ t-cell depletion in hiv infection: Killed by friendly fire?. Curr HIV/AIDS Rep 2, 16–23 (2005). https://doi.org/10.1007/s11904-996-0004-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-996-0004-3

Keywords

Navigation