Skip to main content

Advertisement

Log in

The Role of p53 in HIV Infection

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections.

Recent Findings

Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses.

Summary

In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20(4):199–210.

    Article  CAS  PubMed  Google Scholar 

  2. Lane DP. Cancer p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Article  CAS  PubMed  Google Scholar 

  3. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–3.

    Article  CAS  PubMed  Google Scholar 

  4. Linzer DI, Levine AJ. Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  5. Smith AE, Smith R, Paucha E. Characterization of different tumor antigens present in cells transformed by simian virus 40. Cell. 1979;18(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  6. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244(4901):217–21.

    Article  CAS  PubMed  Google Scholar 

  7. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137(4):609–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laptenko O, Prives C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 2006;13(6):951–61.

    Article  CAS  PubMed  Google Scholar 

  9. Farnebo M, Bykov VJ, Wiman KG. The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer. Biochem Biophys Res Commun. 2010;396(1):85–9.

    Article  CAS  PubMed  Google Scholar 

  10. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.

    Article  CAS  PubMed  Google Scholar 

  11. Momand J, Wu HH, Dasgupta G. MDM2–master regulator of the p53 tumor suppressor protein. Gene. 2000;242(1–2):15–29.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92(6):725–34.

    Article  CAS  PubMed  Google Scholar 

  13. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 2004;5(5):465–75.

    Article  CAS  PubMed  Google Scholar 

  14. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell. 2003;112(6):779–91.

    Article  CAS  PubMed  Google Scholar 

  15. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W. ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell. 2005;121(7):1071–83.

    Article  CAS  PubMed  Google Scholar 

  16. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature. 2004;429(6987):86–92.

    Article  CAS  PubMed  Google Scholar 

  17. Huang Q, Raya A, DeJesus P, Chao SH, Quon KC, Caldwell JS, et al. Identification of p53 regulators by genome-wide functional analysis. Proc Natl Acad Sci U S A. 2004;101(10):3456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–10.

    Article  CAS  PubMed  Google Scholar 

  19. Balint EE, Vousden KH. Activation and activities of the p53 tumour suppressor protein. Br J Cancer. 2001;85(12):1813–23.

    Article  CAS  PubMed Central  Google Scholar 

  20. Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90(4):595–606.

    Article  CAS  PubMed  Google Scholar 

  21. Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 2000;406(6792):207–10.

    Article  CAS  PubMed  Google Scholar 

  22. Samuels-Lev Y, O’Connor DJ, Bergamaschi D, Trigiante G, Hsieh JK, Zhong S, et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8(4):781–94.

    Article  CAS  PubMed  Google Scholar 

  23. Nikolaev AY, Li M, Puskas N, Qin J, Gu W. Parc: a cytoplasmic anchor for p53. Cell. 2003;112(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  24. Huang YF, Wee S, Gunaratne J, Lane DP, Bulavin DV. Isg15 controls p53 stability and functions. Cell Cycle. 2014;13(14):2200–10.

    Article  PubMed  Google Scholar 

  25. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res. 2000;77:81–137.

    Article  CAS  PubMed  Google Scholar 

  26. Munoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW, et al. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol. 2011;187(12):6428–36.

    Article  CAS  PubMed  Google Scholar 

  27. Munoz-Fontela C, Macip S, Martinez-Sobrido L, Brown L, Ashour J, Garcia-Sastre A, et al. Transcriptional role of p53 in interferon-mediated antiviral immunity. J Exp Med. 2008;205(8):1929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pampin M, Simonin Y, Blondel B, Percherancier Y, Chelbi-Alix MK. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol. 2006;80(17):8582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lazo PA, Santos CR. Interference with p53 functions in human viral infections, a target for novel antiviral strategies? Rev Med Virol. 2011;21(5):285–300.

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Zhang W, Liu Y, Xie J, Hu C, Wang X. Role of p53 in pseudorabies virus replication, pathogenicity, and host immune responses. Vet Res. 2019;50(1):9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Charni-Natan M, Solomon H, Rotter V. p53 and the viral connection: back into the future (double dagger). Cancers (Basel). 2018;10(6):178.

    Article  PubMed  Google Scholar 

  32. Sato Y, Tsurumi T. Genome guardian p53 and viral infections. Rev Med Virol. 2013;23(4):213–20.

    Article  CAS  PubMed  Google Scholar 

  33. Maruzuru Y, Fujii H, Oyama M, Kozuka-Hata H, Kato A, Kawaguchi Y. Roles of p53 in herpes simplex virus 1 replication. J Virol. 2013;87(16):9323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maruzuru Y, Koyanagi N, Takemura N, Uematsu S, Matsubara D, Suzuki Y, et al. p53 is a host cell regulator during herpes simplex encephalitis. J Virol. 2016;90(15):6738–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Casavant NC, Luo MH, Rosenke K, Winegardner T, Zurawska A, Fortunato EA. Potential role for p53 in the permissive life cycle of human cytomegalovirus. J Virol. 2006;80(17):8390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu D, Du Q, Han C, Wang Z, Zhang X, Wang T, et al. p53 signaling modulation of cell cycle arrest and viral replication in porcine circovirus type 2 infection cells. Vet Res. 2016;47(1):120.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: an approach to control HIV-1 infection. Int Rev Immunol. 2017;36(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  38. Alqudah MAY, Yaseen MMM, Yaseen MMS. HIV-1 strategies to overcome the immune system by evading and invading innate immune system. HIV AIDS Rev. 2016;15(1):1–12.

    Article  Google Scholar 

  39. Yaseen MM, Abuharfeil NM, Darmani H. Myeloid-derived suppressor cells and the pathogenesis of human immunodeficiency virus infection. Open Biol. 2021;11(11):210216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mohammad Yaseen M, Mohammad Abuharfeil N, Darmani H. T-cell evasion and invasion during HIV-1 infection: the role of HIV-1 Tat protein. Cell Immunol. 2022;377:104554.

    Article  CAS  PubMed  Google Scholar 

  41. Yaseen MM, Abuharfeil NM, Homa D. Anatomical distribution of myeloid-derived suppressor cells during HIV infection. Viral Immunol. 2021;10:673–8.

    Article  Google Scholar 

  42. Abuharfeil NM, Yaseen MM, Alsheyab FM. Harnessing antibody-dependent cellular cytotoxicity to control HIV-1 infection. ACS Infect Dis. 2019;5(2):158–76.

    Article  CAS  PubMed  Google Scholar 

  43. Yaseen MM, Abuharfeil NM, Yaseen MM, Shabsoug BM. The role of polymorphonuclear neutrophils during HIV-1 infection. Arch Virol. 2018;163(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  44. Genini D, Sheeter D, Rought S, Zaunders JJ, Susin SA, Kroemer G, et al. HIV induces lymphocyte apoptosis by a p53-initiated, mitochondrial-mediated mechanism. FASEB J. 2001;15(1):5–6.

    Article  CAS  PubMed  Google Scholar 

  45. Imbeault M, Ouellet M, Tremblay MJ. Microarray study reveals that HIV-1 induces rapid type-I interferon-dependent p53 mRNA up-regulation in human primary CD4+ T cells. Retrovirology. 2009;6:5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yoon CH, Kim SY, Byeon SE, Jeong Y, Lee J, Kim KP, et al. p53-derived host restriction of HIV-1 replication by protein kinase R-mediated Tat phosphorylation and inactivation. J Virol. 2015;89(8):4262–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. • Mukerjee R, Claudio PP, Chang JR, Del Valle L, Sawaya BE. Transcriptional regulation of HIV-1 gene expression by p53. Cell Cycle. 2010;9(22):4569–78. This study investigates the molecular mechanisms behind p53’s negative involvement in the transcriptional regulation of HIV-1. The research reveals that p53, when overexpressed, hinders the phosphorylation of a key RNA polymerase II site, resulting in a stall in transcriptional elongation within the HIV-1 LTR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Duan L, Ozaki I, Oakes JW, Taylor JP, Khalili K, Pomerantz RJ. The tumor suppressor protein p53 strongly alters human immunodeficiency virus type 1 replication. J Virol. 1994;68(7):4302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bargonetti J, Chicas A, White D, Prives C. p53 represses Sp1 DNA binding and HIV-LTR directed transcription. Cell Mol Biol (Noisy-le-grand). 1997;43(7):935–49.

    CAS  PubMed  Google Scholar 

  50. Li CJ, Wang C, Friedman DJ, Pardee AB. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1995;92(12):5461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perfettini JL, Castedo M, Roumier T, Andreau K, Nardacci R, Piacentini M, et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ. 2005;12(Suppl 1):916–23.

    Article  CAS  PubMed  Google Scholar 

  52. Cummins NW, Badley AD. Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis. 2010;1:e99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bakhanashvili M. p53 enhances the fidelity of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene. 2001;20(52):7635–44.

    Article  CAS  PubMed  Google Scholar 

  54. Bakhanashvili M, Novitsky E, Lilling G, Rahav G. P53 in cytoplasm may enhance the accuracy of DNA synthesis by human immunodeficiency virus type 1 reverse transcriptase. Oncogene. 2004;23(41):6890–9.

    Article  CAS  PubMed  Google Scholar 

  55. Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012;2(10):a006882.

  56. Yaseen MM, Abuharfeil NM, Alqudah MA, Yaseen MM. Mechanisms and factors that drive extensive human immunodeficiency virus type-1 hypervariability: an overview. Viral Immunol. 2017;30(10):708–26.

    Article  CAS  PubMed  Google Scholar 

  57. • Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, et al. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J. 2018;15(1):53. This reference explores the inhibitory role of the tumor suppressor protein p53 and its downstream effector gene p21 in the early stages of HIV replication. It likely investigates how these cellular factors interfere with key processes such as viral transcription or integration, shedding light on potential mechanisms for suppressing HIV at an early stage of infection.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gualberto A, Baldwin AS Jr. p53 and Sp1 interact and cooperate in the tumor necrosis factor-induced transcriptional activation of the HIV-1 long terminal repeat. J Biol Chem. 1995;270(34):19680–3.

    Article  CAS  PubMed  Google Scholar 

  59. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell. 1990;61(2):213–22.

    Article  CAS  PubMed  Google Scholar 

  60. Korin YD, Zack JA. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol. 1999;73(8):6526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kootstra NA, Schuitemaker H. Proliferation-dependent replication in primary macrophages of macrophage-tropic HIV type 1 variants. AIDS Res Hum Retroviruses. 1998;14(4):339–45.

    Article  CAS  PubMed  Google Scholar 

  62. Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology. 2010;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Badia R, Pujantell M, Riveira-Munoz E, Puig T, Torres-Torronteras J, Marti R, et al. The G1/S specific cyclin D2 is a regulator of HIV-1 restriction in non-proliferating cells. PLoS Pathog. 2016;12(8):e1005829.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Valle-Casuso JC, Allouch A, David A, Lenzi GM, Studdard L, Barre-Sinoussi F, et al. p21 restricts HIV-1 in monocyte-derived dendritic cells through the reduction of deoxynucleoside triphosphate biosynthesis and regulation of SAMHD1 antiviral activity. J Virol. 2017;91(23):e01324-17.

  65. Zhang J, Scadden DT, Crumpacker CS. Primitive hematopoietic cells resist HIV-1 infection via p21. J Clin Invest. 2007;117(2):473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mlcochova P, Sutherland KA, Watters SA, Bertoli C, de Bruin RA, Rehwinkel J, et al. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J. 2017;36(5):604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan X, Baldauf HM, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res. 2013;23(7):876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, et al. Transcriptional reprogramming during effector-to-memory transition renders CD4(+) T cells permissive for latent HIV-1 infection. Immunity. 2017;47(4):766-75 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. • Akua T, Rahav G, Saragani Y, Hizi A, Bakhanashvili M. Removal of ribonucleotides by p53 protein incorporated during DNA synthesis by HIV-1 reverse transcriptase. AIDS. 2017;31(3):343–53. This reference suggests an intriguing interaction between the host cell’s p53 protein and HIV-1 reverse transcriptase during the process of reverse transcription. Specifically, it delves into the p53 protein’s role in recognizing and removing ribonucleotides that are erroneously incorporated into the viral DNA during HIV-1 replication. Understanding this novel aspect of host-virus interactions may hold significant implications for the development of antiretroviral strategies.

    Article  CAS  PubMed  Google Scholar 

  70. Saragani Y, Hizi A, Rahav G, Zaouch S, Bakhanashvili M. Cytoplasmic p53 contributes to the removal of uracils misincorporated by HIV-1 reverse transcriptase. Biochem Biophys Res Commun. 2018;497(2):804–10.

    Article  CAS  PubMed  Google Scholar 

  71. Vazquez N, Greenwell-Wild T, Marinos NJ, Swaim WD, Nares S, Ott DE, et al. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol. 2005;79(7):4479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elahi S, Weiss RH, Merani S. Atorvastatin restricts HIV replication in CD4+ T cells by upregulation of p21. AIDS. 2016;30(2):171–83.

    Article  CAS  PubMed  Google Scholar 

  73. Kinnetz M, Alghamdi F, Racz M, Hu W, Shi B. The impact of p53 on the early stage replication of retrovirus. Virol J. 2017;14(1):151.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Leng J, Ho HP, Buzon MJ, Pereyra F, Walker BD, Yu XG, et al. A cell-intrinsic inhibitor of HIV-1 reverse transcription in CD4(+) T cells from elite controllers. Cell Host Microbe. 2014;15(6):717–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F, et al. p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci U S A. 2013;110(42):E3997-4006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F, et al. Reply to Pauls et al. p21 is a master regulator of HIV replication in macrophages through dNTP synthesis block. Proc Natl Acad Sci U S A. 2014;111(14):1325–6.

    Article  Google Scholar 

  77. Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbacher E, Seifried J, et al. Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55alpha holoenzymes during mitotic exit. Nat Commun. 2018;9(1):2227.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Cribier A, Descours B, Valadao AL, Laguette N, Benkirane M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep. 2013;3(4):1036–43.

    Article  CAS  PubMed  Google Scholar 

  79. Breton Y, Desrosiers V, Ouellet M, Deshiere A, Torresilla C, Cohen EA, et al. Expression of MDM2 in macrophages promotes the early postentry steps of HIV-1 infection through inhibition of p53. J Virol. 2019;93(7):e01871-18.

  80. Sawaya BE, Khalili K, Mercer WE, Denisova L, Amini S. Cooperative actions of HIV-1 Vpr and p53 modulate viral gene transcription. J Biol Chem. 1998;273(32):20052–7.

    Article  CAS  PubMed  Google Scholar 

  81. Chowdhury IH, Wang XF, Landau NR, Robb ML, Polonis VR, Birx DL, et al. HIV-1 Vpr activates cell cycle inhibitor p21/Waf1/Cip1: a potential mechanism of G2/M cell cycle arrest. Virology. 2003;305(2):371–7.

    Article  CAS  PubMed  Google Scholar 

  82. Chen H, Li C, Huang J, Cung T, Seiss K, Beamon J, et al. CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21. J Clin Invest. 2011;121(4):1549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saez-Cirion A, Hamimi C, Bergamaschi A, David A, Versmisse P, Melard A, et al. Restriction of HIV-1 replication in macrophages and CD4+ T cells from HIV controllers. Blood. 2011;118(4):955–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Pablo A, Bogoi R, Bejarano I, Toro C, Valencia E, Moreno V, et al. Short communication: p21/CDKN1A expression shows broad interindividual diversity in a subset of HIV-1 elite controllers. AIDS Res Hum Retroviruses. 2016;32(3):232–6.

    Article  PubMed  Google Scholar 

  85. Barboric M, Peterlin BM. A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol. 2005;3(2):e76.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Isel C, Karn J. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J Mol Biol. 1999;290(5):929–41.

    Article  CAS  PubMed  Google Scholar 

  87. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell. 1998;92(4):451–62.

    Article  CAS  PubMed  Google Scholar 

  88. Zhu Y, Pe’ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 1997;11(20):2622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. White CH, Moesker B, Beliakova-Bethell N, Martins LJ, Spina CA, Margolis DM, et al. Transcriptomic analysis implicates the p53 signaling pathway in the establishment of HIV-1 latency in central memory CD4 T cells in an in vitro model. PLoS Pathog. 2016;12(11):e1006026.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Trypsteen W, Mohammadi P, Van Hecke C, Mestdagh P, Lefever S, Saeys Y, et al. Differential expression of lncRNAs during the HIV replication cycle: an underestimated layer in the HIV-host interplay. Sci Rep. 2016;6:36111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Trypsteen W, White CH, Mukim A, Spina CA, De Spiegelaere W, Lefever S, et al. Long non-coding RNAs and latent HIV - a search for novel targets for latency reversal. PLoS ONE. 2019;14(11):e0224879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun B, Yang R, Mallardo M. Roles of microRNAs in HIV-1 replication and latency. Microrna. 2016;5(2):120–3.

    Article  CAS  PubMed  Google Scholar 

  93. Ruelas DS, Chan JK, Oh E, Heidersbach AJ, Hebbeler AM, Chavez L, et al. MicroRNA-155 reinforces HIV latency. J Biol Chem. 2015;290(22):13736–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiang K, Sung TL, Rice AP. Regulation of cyclin T1 and HIV-1 replication by microRNAs in resting CD4+ T lymphocytes. J Virol. 2012;86(6):3244–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med. 2007;13(10):1241–7.

    Article  CAS  PubMed  Google Scholar 

  96. Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol Cell. 2009;34(6):696–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Heinson AI, Woo J, Mukim A, White CH, Moesker B, Bosque A, et al. Micro RNA targets in HIV latency: insights into novel layers of latency control. AIDS Res Hum Retroviruses. 2021;37(2):109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brooks CL, Gu W. p53 ubiquitination: Mdm2 and beyond. Mol Cell. 2006;21(3):307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017;170(6):1062–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol. 2014;1(3):e969653.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal. 2010;22(7):1003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Osei Kuffour E, Konig R, Haussinger D, Schulz WA, Munk C. ISG15 deficiency enhances HIV-1 infection by accumulating misfolded p53. mBio. 2019;10(4):e01342-19.

  103. Osei Kuffour E, Schott K, Jaguva Vasudevan AA, Holler J, Schulz WA, Lang PA, et al. USP18 (UBP43) abrogates p21-mediated inhibition of HIV-1. J Virol. 2018;92(20):e00592-18.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Menendez D, Anderson CW. p53 vs. ISG15: stop, you’re killing me. Cell Cycle. 2014;13(14):2160–1.

  105. Chicas A, Molina P, Bargonetti J. Mutant p53 forms a complex with Sp1 on HIV-LTR DNA. Biochem Biophys Res Commun. 2000;279(2):383–90.

    Article  CAS  PubMed  Google Scholar 

  106. Wilson KM, He JJ. HIV Nef expression down-modulated GFAP expression and altered glutamate uptake and release and proliferation in astrocytes. Aging Dis. 2023;14(1):152–69.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, et al. Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem. 2003;278(14):12310–8.

    Article  CAS  PubMed  Google Scholar 

  108. Barillari G, Palladino C, Bacigalupo I, Leone P, Falchi M, Ensoli B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol Lett. 2016;12(4):2389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Longo F, Marchetti MA, Castagnoli L, Battaglia PA, Gigliani F. A novel approach to protein-protein interaction: complex formation between the p53 tumor suppressor and the HIV Tat proteins. Biochem Biophys Res Commun. 1995;206(1):326–34.

    Article  CAS  PubMed  Google Scholar 

  110. Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol. 2002;76(6):2692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020;529(4):1038–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We confirm that we do not need permission for Fig. 1.

Funding

Funding was not received for the study.

Author information

Authors and Affiliations

Authors

Contributions

M.M.Y. contributed to writing all sections. N.M.A. contributed to writing the introduction and conclusion. H.D. contributed to writing the introduction. M.M.Y., N.M.A., and H.D. critically reviewed and validated the final version of this paper.

Corresponding author

Correspondence to Mahmoud Mohammad Yaseen.

Ethics declarations

Ethical Approval

Not required.

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, M.M., Abuharfeil, N.M. & Darmani, H. The Role of p53 in HIV Infection. Curr HIV/AIDS Rep 20, 419–427 (2023). https://doi.org/10.1007/s11904-023-00684-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-023-00684-8

Keywords

Navigation