Skip to main content

Advertisement

Log in

Neuroimaging the Neuropathogenesis of HIV

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlights neuroimaging studies of HIV conducted over the last 2 years and discusses how relevant findings further our knowledge of the neuropathology of HIV. Three major avenues of neuroimaging research are covered with a particular emphasis on inflammation, aging, and substance use in persons living with HIV (PLWH).

Recent Findings

Neuroimaging has been a critical tool for understanding the neuropathological underpinnings observed in HIV. Recent studies comparing levels of neuroinflammation in PLWH and HIV-negative controls show inconsistent results but report an association between elevated neuroinflammation and poorer cognition in PLWH. Other recent neuroimaging studies suggest that older PLWH are at increased risk for brain and cognitive compromise compared to their younger counterparts. Finally, recent findings also suggest that the effects of HIV may be exacerbated by alcohol and drug abuse.

Summary

These neuroimaging studies provide insight into the structural, functional, and molecular changes occurring in the brain due to HIV. HIV triggers a strong neuroimmune response and may lead to a cascade of events including increased chronic inflammation and cognitive decline. These outcomes are further exacerbated by age and age-related comorbidities, as well as lifestyle factors such as drug use/abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Trickey A, May MT, Vehreschild JJ, Obel N, Gill MJ, Crane HM, et al. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and 2013: a collaborative analysis of cohort studies. Lancet HIV. 2017;4:e349–56.

    Article  Google Scholar 

  2. Clifford DB. HIV-associated neurocognitive disorder. Curr Opin Infect Dis. 2017;30:117–22 Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00001432-900000000-99376.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: a meta-analysis. Neurology. 2020;95:e2610–21.

    Article  CAS  PubMed  Google Scholar 

  4. Heaton RK, Clifford DB, Franklin DR, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: charter study. Neurology. 2010;75:2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, et al. HIV-associated neurocognitive disorder — pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:234–48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paul R. Neurocognitive phenotyping of HIV in the era of antiretroviral therapy. Curr HIV/AIDS Rep. 2019;16:230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect. Dis. 2013;13:976–86.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206:275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. J Virus Erad. 2015;1:67–71.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Joseph SB, Kincer LP, Bowman NM, Evans C, Vinikoor MJ, Lippincott CK, et al. Human immunodeficiency virus type 1 RNA detected in the central nervous system (CNS) after years of suppressive antiretroviral therapy can originate from a replicating CNS reservoir or clonally expanded cells. Clin Infect Dis. 2019;69:1345–52.

    Article  PubMed  Google Scholar 

  11. Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep. 2015;12:16–24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joseph SB, Trunfio M, Kincer LP, Calcagno A, Price RW. What can characterization of cerebrospinal fluid escape populations teach us about viral reservoirs in the central nervous system? Aids. 2019;33:S171–9.

    Article  CAS  PubMed  Google Scholar 

  13. Peluso MJ, Valcour V, Ananworanich J, Sithinamsuwan P, Chalermchai T, Fletcher JLK, et al. Absence of cerebrospinal fluid signs of neuronal injury before and after immediate antiretroviral therapy in acute HIV infection. J Infect Dis. 2015;212:1759–67.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anderson AM, Jang JH, Easley KA, Fuchs D, Gisslen M, Zetterberg H, et al. Cognitive and neuronal link with inflammation. JAIDS J Acquir Immune Defic Syndr. 2020;85:617.

    Article  PubMed  Google Scholar 

  15. Peluso MJ, Valcour V, Phanuphak N, Ananworanich J, Fletcher JLK, Chalermchai T, et al. Immediate initiation of cART is associated with lower levels of cerebrospinal fluid YKL-40, a marker of microglial activation, in HIV-1 infection. AIDS. 2017;31:247–52.

    Article  CAS  PubMed  Google Scholar 

  16. Gandhi RT, McMahon DK, Bosch RJ, Lalama CM, Cyktor JC, Macatangay BJ, et al. Levels of HIV-1 persistence on antiretroviral therapy are not associated with markers of inflammation or activation. PLoS Pathog. 2017;13:1–21.

    Article  CAS  Google Scholar 

  17. Cai CW, Pinyakorn S, Kroon E, de Souza M, Colby DJ, Pankam T, et al. Inflammatory biomarkers do not differ between persistently seronegative vs seropositive people with HIV after treatment in early acute HIV infection. Open Forum Infect Dis. 2020;7:1–4.

    Article  CAS  Google Scholar 

  18. D’Antoni ML, Byron MM, Chan P, Sailasuta N, Sacdalan C, Sithinamsuwan P, et al. Normalization of soluble CD163 levels after institution of antiretroviral therapy during acute HIV infection tracks with fewer neurological abnormalities. J Infect Dis. 2018;218:1453–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hellmuth J, Slike BM, Sacdalan C, Best J, Kroon E, Phanuphak N, et al. Very early initiation of antiretroviral therapy during acute HIV infection is associated with normalized levels of immune activation markers in cerebrospinal fluid but not in plasma. J Infect Dis. 2019;220:1885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammoud DA, Endres CJ, Chander AR, Guilarte TR, Wong DF, Sacktor NC, et al. Imaging glial cell activation with [ 11 C]- R -PK11195 in patients with AIDS. J Neurovirol. 2005;11:346–55.

    Article  CAS  PubMed  Google Scholar 

  21. Wiley CA, Lopresti BJ, Becker JT, Boada F, Lopez OL, Mellors J, et al. Positron emission tomography imaging of peripheral benzodiazepine receptor binding in human immunodeficiency virus-infected subjects with and without cognitive impairment. J Neurovirol. 2006;12:262–71.

    Article  CAS  PubMed  Google Scholar 

  22. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. Aids. 2014;28:67–72.

    Article  CAS  PubMed  Google Scholar 

  23. Coughlin JM, Wang Y, Ma S, Yue C, Kim PK, Adams AV, et al. Regional brain distribution of translocator protein using [11C]DPA-713 PET in individuals infected with HIV. J Neurovirol. 2014;20:219–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vera JH, Guo Q, Cole JH, Boasso A, Greathead L, Kelleher P, et al. Neuroinflammation in treated HIV-positive individuals. Neurology. 2016;86:1425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. • Boerwinkle AH, Strain JF, Burdo T, Doyle J, Christensen J, Su Y, et al. Comparison of [11C]-PBR28 binding between persons living with HIV and HIV uninfected individuals. JAIDS J Acquir Immune Defic Syndr. 2020;85:244–51. This is the largest PET imaging study of neuroinflammation in PLWH to date. Neuroinflammation was not elevated in PLWH compared to HIV-negative controls. Poorer cognition, however, was associated with increase neuroinflammation in certain regions in PLWH but not HIV− controls.

    Article  CAS  PubMed  Google Scholar 

  26. Chaganti J, Marripudi K, Staub LP, Rae CD, Gates TM, Moffat KJ, et al. Imaging correlates of the blood–brain barrier disruption in HIV-associated neurocognitive disorder and therapeutic implications. AIDS. Lippincott Williams and Wilkins. 2019;33:1843–52.

    CAS  Google Scholar 

  27. Boban J, Kozic D, Turkulov V, Ostojic J, Semnic R, Lendak D, et al. HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naïve and treated patients. Eur Radiol. 2017;27:4218–36.

    Article  PubMed  Google Scholar 

  28. Cysique LA, Jugé L, Gates T, Tobia M, Moffat K, Brew BJ, et al. Covertly active and progressing neurochemical abnormalities in suppressed HIV infection. Neurol Neuroimmunol NeuroInflammation. 2018;5:e430.

    Article  Google Scholar 

  29. • Boban J, Thurnher MM, Brkic S, Lendak D, Bugarski Ignjatovic V, Todorovic A, et al. Neurometabolic remodeling in chronic HIV infection: a five-year follow-up multi-voxel MRS study. Sci Rep. 2019;9:1–11. To our knowledge, this study is the first to measure the long-term changes in metabolic profiles of neuroinflammation in chronically-infected PLWH. Results showed a regional increase in choline and myo-inositol levels after five years despite adhering to cART and remaining virologically suppressed.

    Article  CAS  Google Scholar 

  30. Alakkas A, Ellis RJ, Watson CWM, Umlauf A, Heaton RK, Letendre S, et al. White matter damage, neuroinflammation, and neuronal integrity in HAND. J Neurovirol. 2019;25:32–41.

    Article  CAS  PubMed  Google Scholar 

  31. Valdez AN, Rubin LH, Neigh GN. Untangling the Gordian knot of HIV, stress, and cognitive impairment. Neurobiol Stress. Elsevier Inc. 2016;4:44–54.

    Article  Google Scholar 

  32. Liang HJ, O’Connor EE, Ernst T, Oishi K, Cunningham E, Chang L. Greater sensorimotor deficits and abnormally lower globus pallidus fractional anisotropy in HIV+ women than in HIV+ men. J Neuroimmune Pharmacol. 2020. https://doi.org/10.1007/s11481-020-09915-w.

  33. Crum-Cianflone NF, Moore DJ, Letendre S, Roediger MP, Eberly L, Weintrob A, et al. Low prevalence of neurocognitive impairment in early diagnosed and managed HIV-infected persons. Neurology. Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2013;80:371–9.

    Google Scholar 

  34. Garvey L, Surendrakumar V, Winston A. Low rates of neurocognitive impairment are observed in neuro-asymptomatic HIV-infected subjects on effective antiretroviral therapy. HIV Clin Trials. Taylor & Francis. 2011;12:333–8.

    Article  CAS  Google Scholar 

  35. • Calon M, Menon K, Carr A, Henry RG, Rae CD, Brew BJ, et al. Additive and synergistic cardiovascular disease risk factors and HIV disease markers’ effects on white matter microstructure in virally suppressed HIV. J Acquir Immune Defic Syndr. NLM (Medline). 2020;84:543–51. This study assessed the relationship between CVD and HIV and their impact on white matter microstructure. Results showed an additive relationship between high CVD risk and HIV status. Greater white matter microstructural abnormalities were present in older PLWH at high risk of CVD than those at lower risk.

    Article  CAS  Google Scholar 

  36. • Saloner R, Heaton RK, Campbell LM, Chen A, Franklin D, Ellis RJ, et al. Effects of comorbidity burden and age on brain integrity in HIV. AIDS. Lippincott Williams and Wilkins. 2019;33:1175–85. Using structural MRI and MRS, this study assessed the effects of age and comorbidities grouped by severity in PLWH. Results suggest the impact of HIV on the brain as well as the interaction with age differs by severity of comorbidity burden.

    Google Scholar 

  37. Manrique-Vallier D. Mixed membership trajectory models. In: Airoldi E, Blei D, Erosheva E, Fienberg S, editors. Handb Mix Membsh Model Their Appl. 1st Edition. New York: Chapman and Hall/CRC; 2015. p. 173–88.

  38. Popov M, Molsberry SA, Lecci F, Junker B, Kingsley LA, Levine A, et al. Brain structural correlates of trajectories to cognitive impairment in men with and without HIV disease. Brain Imaging Behav. Springer. 2020;14:821–9.

    Article  Google Scholar 

  39. Kuhn T, Jin Y, Huang C, Kim Y, Nir TM, Gullett JM, et al. The joint effect of aging and HIV infection on microstructure of white matter bundles. Hum Brain Mapp. John Wiley and Sons Inc. 2019;40:4370–80.

    Article  Google Scholar 

  40. • Gullett JM, Lamb DG, Porges E, Woods AJ, Rieke J, Thompson P, et al. The impact of alcohol use on frontal white matter in HIV. Alcohol Clin Exp Res. 2018;42:1640–9. This study used DTI to assess white matter integrity in PLWH with and without alcohol use disorder. Results showed reduced frontal axonal integrity in PLWH with alcohol use disorder even after adjusting for variables such as CD4 and duration of infection.

  41. Kuhn T, Schonfeld D, Sayegh P, Arentoft A, Jones JD, Hinkin CH, et al. The effects of HIV and aging on subcortical shape alterations: a 3D morphometric study. Hum Brain Mapp. John Wiley and Sons Inc. 2017;38:1025–37.

    Article  Google Scholar 

  42. Luckett P, Paul RH, Navid J, Cooley SA, Wisch JK, Boerwinkle AH, et al. Deep learning analysis of cerebral blood flow to identify cognitive impairment and frailty in persons living with HIV. JAIDS J Acquir Immune Defic Syndr. Lippincott Williams and Wilkins. 2019;82:496–502.

    Article  Google Scholar 

  43. Valcour V, Sithinamsuwan P, Letendre S, Ances B. Pathogenesis of HIV in the central nervous system. Curr. HIV/AIDS Rep. 2011;8:54–61.

    Article  PubMed  Google Scholar 

  44. Groff BR, Wiesman AI, Rezich MT, O’Neill J, Robertson KR, Fox HS, et al. Age-related visual dynamics in HIV-infected adults with cognitive impairment. Neurol Neuroimmunol neuroinflammation. NLM (Medline). 2020;7:690.

    Article  Google Scholar 

  45. Paul RH, Cho KS, Luckett P, Strain JF, Belden AC, Bolzenius JD, et al. Machine learning analysis reveals novel neuroimaging and clinical signatures of frailty in HIV. J Acquir Immune Defic Syndr. 2020;84:414.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamp F, Proebstl L, Penzel N, Adorjan K, Ilankovic A, Pogarell O, et al. Effects of sedative drug use on the dopamine system: a systematic review and meta-analysis of in vivo neuroimaging studies. Neuropsychopharmacology. 2019;44:660–7.

    Article  CAS  PubMed  Google Scholar 

  47. Naveed MA, Feizi P, Mehta RI. Neuroimaging of substance abuse. Neurographics. 2019;9:18–32.

  48. Lorkiewicz SA, Ventura AS, Heeren TC, Winter MR, Walley AY, Sullivan M, et al. Lifetime marijuana and alcohol use, and cognitive dysfunction in people with human immunodeficiency virus infection. Subst Abus. 2018;39:116.

    Article  PubMed  Google Scholar 

  49. Lesko CR, Keil AP, Moore RD, Chander G, Fojo AT, Lau B. Measurement of current substance use in a cohort of HIV-infected persons in continuity HIV care, 2007-2015. Am J Epidemiol. 2018;187:1970.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Calderon TM, Williams DW, Lopez L, Eugenin EA, Cheney L, Gaskill PJ, et al. Dopamine increases CD14+CD16+ monocyte transmigration across the blood brain barrier: implications for substance abuse and HIV neuropathogenesis. J Neuroimmune Pharmacol. 2017;12:353–70.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hartzler B, Carlini BH, Newville H, Crane HM, Eron JJ, Geng EH, et al. Identifying HIV care enrollees at-risk for cannabis use disorder. AIDS Care - Psychol Socio-Medical Asp AIDS/HIV. 2017;29:846.

    Article  Google Scholar 

  52. Holt JL, Kraft-Terry SD, Chang L. Neuroimaging studies of the aging HIV-1-infected brain. J. Neurovirol. 2012;18:291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zahr NM. The aging brain with HIV infection: effects of alcoholism or Hepatitis C comorbidity. Front Aging Neurosci. 2018;10:56.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liang H, Chang L, Chen R, Oishi K, Ernst T. Independent and combined effects of chronic HIV-infection and tobacco smoking on brain microstructure. J Neuroimmune Pharmacol. 2018;13:509–22.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bell RP, Towe SL, Lalee Z, Huettel SA, Meade CS. Neural sensitivity to risk in adults with co-occurring HIV infection and cocaine use disorder. Cogn Affect Behav Neurosci. 2020;20:859.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Meade CS, Bell RP, Towe SL, Chen N k, Hobkirk AL, Huettel SA. Synergistic effects of marijuana abuse and HIV infection on neural activation during a cognitive interference task. Addict Biol. 2019;24:1235.

    Article  PubMed  Google Scholar 

  57. Meyerhoff DJ. Structural neuroimaging in polysubstance users. Curr Opin Behav Sci. 2017;13;13–8.

  58. Liu Y, Williamson V, Setlow B, Cottler LB, Knackstedt LA. The importance of considering polysubstance use: lessons from cocaine research. Drug Alcohol Depend. 2018;192:16–28.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging impaired response inhibition and salience attribution in human drug addiction: a systematic review. Neuron. 2018;98:886–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gamarel KE, Westfall AO, Lally MA, Hosek S, Wilson CM. Tobacco use and sustained viral suppression in youth living with HIV. AIDS Behav. 2018;22:2018–25.

  61. Ghura S, Gross R, Jordan-Sciutto K, Dubroff J, Schnoll R, Collman RG, et al. Bidirectional associations among nicotine and tobacco smoke, neuroHIV, and antiretroviral therapy. J. Neuroimmune Pharmacol. 2019;15:694–714.

  62. Ashare RL, Thompson M, Leone F, Metzger D, Gross R, Mounzer K, et al. Differences in the rate of nicotine metabolism among smokers with and without HIV. AIDS. 2019;33:1083.

    Article  CAS  PubMed  Google Scholar 

  63. Delgado-Vélez M, Lasalde-Dominicci JA. HIV-infected subjects and tobacco smoking: a focus on nicotine effects in the brain. In: Preedy V, editor. Neurosci Nicotine. 1st Edition. London: Elsevier; 2019. p. 329–36.

  64. Royal W, Can A, Gould TD, Guo M, Huse J, Jackson M, et al. Cigarette smoke and nicotine effects on brain proinflammatory responses and behavioral and motor function in HIV-1 transgenic rats. J Neurovirol. 2018;24:246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chang K, Premeaux TA, Cobigo Y, Milanini B, Hellmuth J, Rubin LH, et al. Plasma inflammatory biomarkers link to diffusion tensor imaging metrics in virally suppressed HIV-infected individuals. AIDS. 2020;34:203.

    Article  PubMed  Google Scholar 

  66. Tsima B, Ratcliffe SJ, Schnoll R, Frank I, Kolson DL, Gross R. Is tobacco use associated with neurocognitive dysfunction in individuals with HIV? J Int Assoc Provid AIDS Care. 2018;17:2325958218768018.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Feldman DE, McPherson KL, Biesecker CL, Wiers CE, Manza P, Volkow ND, et al. Neuroimaging of inflammation in alcohol use disorder: a review. Sci China Inf Sci. 2020.

  68. Monnig MA. Immune activation and neuroinflammation in alcohol use and HIV infection: evidence for shared mechanisms. Am. J. Drug Alcohol Abuse. 2017;43:7–23.

    Article  PubMed  Google Scholar 

  69. Okafor CN, Cook RL, Chen X, Surkan PJ, Becker JT, Shoptaw S, et al. Trajectories of marijuana use among HIV-seropositive and HIV-seronegative MSM in the Multicenter AIDS Cohort Study (MACS), 1984–2013. AIDS Behav. 2017;21:1091.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Okafor CN, Cook RL, Chen X, Surkan PJ, Becker JT, Shoptaw S, et al. Prevalence and correlates of marijuana use among HIV-seropositive and seronegative men in the Multicenter AIDS Cohort Study (MACS), 1984–2013. Am J Drug Alcohol Abuse. 2017;43:556.

    Article  PubMed  Google Scholar 

  71. Nicholas PK, Voss JG, Corless IB, Lindgren TG, Wantland DJ, Kemppainen JK, et al. Unhealthy behaviours for self-management of HIV-related peripheral neuropathy. AIDS Care - Psychol Socio-Medical Asp AIDS/HIV. 2007;19:1266.

    Article  CAS  Google Scholar 

  72. Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA – J Am Med Assoc. 2015;313:2456.

    Article  CAS  Google Scholar 

  73. Woolridge E, Barton S, Samuel J, Osorio J, Dougherty A, Holdcroft A. Cannabis use in HIV for pain and other medical symptoms. J Pain Symptom Manage. 2005;29:358–67.

    Article  PubMed  Google Scholar 

  74. Prentiss D, Power R, Balmas G, Tzuang G, Israelski DM. Patterns of marijuana use among patients with HIV/AIDS followed in a public health care setting. J Acquir Immune Defic Syndr. 2004;35:38–45.

    Article  PubMed  Google Scholar 

  75. Li R, Wang W, Wang Y, Peters S, Zhang X, Li H. Effects of early HIV infection and combination antiretroviral therapy on intrinsic brain activity: a cross-sectional resting-state fMRI study. Neuropsychiatr Dis Treat. 2019;15:883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Abidin AZ, DSouza AM, Schifitto G, Wismüller A. Detecting cognitive impairment in HIV-infected individuals using mutual connectivity analysis of resting state functional MRI. J Neurovirol. 2020;26:188–200.

    Article  PubMed  Google Scholar 

  77. Camchong J, Collins PF, Becker MP, Lim KO, Luciana M. Longitudinal alterations in prefrontal resting brain connectivity in non-treatment-seeking young adults with cannabis use disorder. Front Psychiatry. 2019;10:514.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hall SA, Lalee Z, Bell RP, Towe SL, Meade CS. Synergistic effects of HIV and marijuana use on functional brain network organization. Prog Neuro-Psychopharmacology Biol Psychiatry. 2021;104:110040.

    Article  Google Scholar 

  79. Thames AD, Kuhn TP, Williamson TJ, Jones JD, Mahmood Z, Hammond A. Marijuana effects on changes in brain structure and cognitive function among HIV+ and HIV− adults. Drug Alcohol Depend. 2017;170:120–7.

    Article  CAS  PubMed  Google Scholar 

  80. Ersche KD, Döffinger R. Inflammation and infection in human cocaine addiction. Curr Opin Behav Sci. 2017;13:203–9.

  81. Meade CS, Hobkirk AL, Towe SL, Chen N k, Bell RP, Huettel SA. Cocaine dependence modulates the effect of HIV infection on brain activation during intertemporal decision making. Drug Alcohol Depend. 2017;178:443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cordero DM, Towe SL, Chen N k, Robertson KR, Madden DJ, Huettel SA, et al. Cocaine dependence does not contribute substantially to white matter abnormalities in HIV infection. J Neurovirol. 2017;23:441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Degenhardt L, Mathers B, Guarinieri M, Panda S, Phillips B, Strathdee SA, et al. Meth/amphetamine use and associated HIV: implications for global policy and public health. Int. J. Drug Policy. 2010;21:347–58.

    Article  PubMed  Google Scholar 

  84. Saloner R, Cherner M, Iudicello JE, Heaton RK, Letendre SL, Ellis RJ. Cerebrospinal fluid norepinephrine and neurocognition in HIV and methamphetamine dependence. JAIDS J Acquir Immune Defic Syndr. 2020;85:e12.

    Article  CAS  PubMed  Google Scholar 

  85. Sabrini S, Wang GY, Lin JC, Ian JK, Curley LE. Methamphetamine use and cognitive function: a systematic review of neuroimaging research. Drug Alcohol Depend. 2019;194:75–87.

    Article  CAS  PubMed  Google Scholar 

  86. Droutman V, Xue F, Barkley-Levenson E, Lam HY, Bechara A, Smith B, et al. Neurocognitive decision-making processes of casual methamphetamine users. NeuroImage Clin. 2019;21:101643.

    Article  PubMed  Google Scholar 

  87. Vuletic D, Dupont P, Robertson F, Warwick J, Zeevaart JR, Stein DJ. Methamphetamine dependence with and without psychotic symptoms: a multi-modal brain imaging study. NeuroImage Clin. 2018;20:1157–62.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Paolillo EW, Saloner R, Montoya JL, Campbell LM, Pasipanodya EC, Iudicello JE, et al. Frailty in comorbid HIV and lifetime methamphetamine use disorder: associations with neurocognitive and everyday functioning. AIDS Res Hum Retroviruses. 2019;35:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Soontornniyomkij V, Kesby JP, Morgan EE, Bischoff-Grethe A, Minassian A, Brown GG, et al. Effects of HIV and methamphetamine on brain and behavior: evidence from human studies and animal models. J. Neuroimmune Pharmacol. 2016;11:495–510.

    Article  PubMed  PubMed Central  Google Scholar 

  90. MacDuffie KE, Brown GG, McKenna BS, Liu TT, Meloy MJ, Tawa B, et al. Effects of HIV Infection, methamphetamine dependence and age on cortical thickness, area and volume. NeuroImage Clin. 2018;20:1044.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TL, et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry. 2005;162(8):1461.

    Article  PubMed  Google Scholar 

  92. Taylor MJ, Schweinsburg BC, Alhassoon OM, Gongvatana A, Brown GG, Young-Casey C, et al. Effects of human immunodeficiency virus and methaphetamine on cerebral metabolites measured with magnetic resonance spectroscopy. J Neurovirol. 2007;13:150.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Institute for Nursing Research (R01NR014449 and R01NR015738), the National Institute of Mental Health (R01MH118031), and the Washington University Institute of Clinical and Translational Sciences (UL-TR000448 from the National Center for Advancing Translational Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beau M. Ances.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boerwinkle, A.H., Meeker, K.L., Luckett, P. et al. Neuroimaging the Neuropathogenesis of HIV. Curr HIV/AIDS Rep 18, 221–228 (2021). https://doi.org/10.1007/s11904-021-00548-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00548-z

Keywords

Navigation