Skip to main content

Advertisement

Log in

Obesity and Weight Gain in Persons with HIV

  • HIV Pathogenesis and Treatment (AL Landay and NS Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The proportion of overweight and obese persons with HIV (PWH) has increased since the introduction of antiretroviral therapy (ART). We aim to summarize recent literature on risks of weight gain, discuss adipose tissue changes in HIV and obesity, and synthesize current understanding of how excess adiposity and HIV contribute to metabolic complications.

Recent Findings

Recent studies have implicated contemporary ART regimens, including use of integrase strand transfer inhibitors and tenofovir alafenamide, as a contributor to weight gain, though the mechanisms are unclear. Metabolic dysregulation is linked to ectopic fat and alterations in adipose immune cell populations that accompany HIV and obesity. These factors contribute to an increasing burden of metabolic diseases in the aging HIV population.

Summary

Obesity compounds an increasing burden of metabolic disease among PWH, and understanding the role of fat partitioning and HIV- and ART-related adipose tissue dysfunction may guide prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Crum-Cianflone N, Roediger MP, Eberly L, Headd M, Marconi V, Ganesan A, et al. Increasing rates of obesity among HIV-infected persons during the HIV epidemic. PLoS One. 2010;5(4):e10106. https://doi.org/10.1371/journal.pone.0010106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. • Koethe JR, Jenkins CA, Lau B, Shepherd BE, Justice AC, Tate JP, et al. Rising obesity prevalence and weight gain among adults starting antiretroviral therapy in the United States and Canada. AIDS Res Hum Retroviruses. 2016;32(1):50–8. https://doi.org/10.1089/aid.2015.0147. This study reported trends in weight gain and obesity over 12 years among PWH in North America.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tate T, Willig AL, Willig JH, Raper JL, Moneyham L, Kempf MC, et al. HIV infection and obesity: where did all the wasting go? Antivir Ther. 2012;17(7):1281–9. https://doi.org/10.3851/IMP2348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hernandez D, Kalichman S, Cherry C, Kalichman M, Washington C, Grebler T. Dietary intake and overweight and obesity among persons living with HIV in Atlanta Georgia. AIDS Care. 2017;29(6):767–71. https://doi.org/10.1080/09540121.2016.1238441.

    Article  PubMed  Google Scholar 

  5. Vancampfort D, Mugisha J, De Hert M, Probst M, Firth J, Gorczynski P, et al. Global physical activity levels among people living with HIV: a systematic review and meta-analysis. Disabil Rehabil. 2018;40(4):388–97. https://doi.org/10.1080/09638288.2016.1260645.

    Article  PubMed  Google Scholar 

  6. Melchior JC, Salmon D, Rigaud D, Leport C, Bouvet E, Detruchis P, et al. Resting energy expenditure is increased in stable, malnourished HIV-infected patients. Am J Clin Nutr. 1991;53(2):437–41. https://doi.org/10.1093/ajcn/53.2.437.

    Article  CAS  PubMed  Google Scholar 

  7. •• Sax PE, Erlandson KM, Lake JE, McComsey GA, Orkin C, Esser S, et al. Weight gain following initiation of antiretroviral therapy: risk factors in randomized comparative clinical trials. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz999. This pooled analysis of 8 phase III randomized clinical trials found greater weight gain among ART-naïve persons starting dolutegravir, bictegravir, and TAF-containing regimens.

  8. Yuh B, Tate J, Butt AA, Crothers K, Freiberg M, Leaf D, et al. Weight change after antiretroviral therapy and mortality. Clin Infect Dis. 2015;60:1852–9. https://doi.org/10.1093/cid/civ192.

    Article  PubMed  PubMed Central  Google Scholar 

  9. • Herrin M, Tate JP, Akgun KM, Butt AA, Crothers K, Freiberg MS, et al. Weight gain and incident diabetes among hiv-infected veterans initiating antiretroviral therapy compared with uninfected individuals. J Acquir Immune Defic Syndr. 2016;73(2):228–36. https://doi.org/10.1097/QAI.0000000000001071. This study in the Veterans Aging Cohort Study found weight gain was associated with greater risk of incident diabetes in PWH compared to HIV-negative individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78(7):485–92. https://doi.org/10.1212/WNL.0b013e3182478d64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mohammed SS, Aghdassi E, Salit IE, Avand G, Sherman M, Guindi M, et al. HIV-positive patients with nonalcoholic fatty liver disease have a lower body mass index and are more physically active than HIV-negative patients. J Acquir Immune Defic Syndr. 2007;45(4):432–8. https://doi.org/10.1097/QAI.0b013e318074efe3.

    Article  CAS  PubMed  Google Scholar 

  12. Achhra AC, Sabin C, Ryom L, Hatleberg C, Antonella d'Aminio M, de Wit S, et al. Body mass index and the risk of serious non-AIDS events and all-cause mortality in treated HIV-positive individuals: D:A:D cohort analysis. J Acquir Immune Defic Syndr. 2018;78(5):579–88. https://doi.org/10.1097/QAI.0000000000001722.

    Article  PubMed  Google Scholar 

  13. Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol. 2016;231(3):R77–99. https://doi.org/10.1530/JOE-16-0211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Souza Dantas Oliveira SH, de Souza Aarao TL, da Silva Barbosa L, Souza Lisboa PG, Tavares Dutra CD, Margalho Sousa L, et al. Immunohistochemical analysis of the expression of TNF-alpha, TGF-beta, and caspase-3 in subcutaneous tissue of patients with HIV lipodystrophy syndrome. Microb Pathog. 2014;67–68:41–7. https://doi.org/10.1016/j.micpath.2014.02.004.

    Article  CAS  PubMed  Google Scholar 

  15. Shikuma CM, Gangcuangco LM, Killebrew DA, Libutti DE, Chow DC, Nakamoto BK, et al. The role of HIV and monocytes/macrophages in adipose tissue biology. J Acquir Immune Defic Syndr. 2014;65(2):151–9. https://doi.org/10.1097/01.qai.0000435599.27727.6c.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. •• Venter WDF, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, et al. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N Engl J Med. 2019;381(9):803–15. https://doi.org/10.1056/NEJMoa1902824. A large randomized controlled trial that found dolutegravir-containing regimens were associated with greater weight gain than efavirenz, and regimens with both tenofovir alafenamide and dolutegravir were associated with the greatest weight gain.

    Article  CAS  PubMed  Google Scholar 

  17. Giralt M, Domingo P, Guallar JP, de la Concepcion ML R, Alegre M, Domingo JC, et al. HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV-1/HAART-associated lipodystrophy. Antivir Ther. 2006;11(6):729–40.

    CAS  PubMed  Google Scholar 

  18. Grunfeld C, Saag M, Cofrancesco J Jr, Lewis CE, Kronmal R, Heymsfield S, et al. Regional adipose tissue measured by MRI over 5 years in HIV-infected and control participants indicates persistence of HIV-associated lipoatrophy. AIDS. 2010;24(11):1717–26. https://doi.org/10.1097/QAD.0b013e32833ac7a2.

    Article  PubMed  Google Scholar 

  19. Carter VM, Hoy JF, Bailey M, Colman PG, Nyulasi I, Mijch AM. The prevalence of lipodystrophy in an ambulant HIV-infected population: it all depends on the definition. HIV Med. 2001;2(3):174–80.

    Article  CAS  PubMed  Google Scholar 

  20. Saves M, Raffi F, Capeau J, Rozenbaum W, Ragnaud JM, Perronne C, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis. 2002;34(10):1396–405. https://doi.org/10.1086/339866.

    Article  CAS  PubMed  Google Scholar 

  21. Betene ADC, De Wit S, Neuhaus J, Palfreeman A, Pepe R, Pankow JS, et al. Interleukin-6, high sensitivity C-reactive protein, and the development of type 2 diabetes among HIV-positive patients taking antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;67(5):538–46. https://doi.org/10.1097/QAI.0000000000000354.

    Article  CAS  Google Scholar 

  22. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49(4):744–7. https://doi.org/10.1007/s00125-006-0173-z.

    Article  CAS  PubMed  Google Scholar 

  23. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84. https://doi.org/10.1172/JCI29881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, et al. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19(1):162–71. https://doi.org/10.1016/j.cmet.2013.11.017.

    Article  CAS  PubMed  Google Scholar 

  25. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20. https://doi.org/10.1038/nm.1964.

    Article  CAS  PubMed  Google Scholar 

  26. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9. https://doi.org/10.1038/nm.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Couturier J, Suliburk JW, Brown JM, Luke DJ, Agarwal N, Yu X, et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS. 2015;29(6):667–74. https://doi.org/10.1097/QAD.0000000000000599.

    Article  CAS  PubMed  Google Scholar 

  28. Hasse B, Iff M, Ledergerber B, Calmy A, Schmid P, Hauser C, et al. Obesity trends and body mass index changes after starting antiretroviral treatment: the Swiss HIV Cohort Study. Open Forum Infect Dis. 2014;1(2):ofu040. https://doi.org/10.1093/ofid/ofu040.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Erlandson KM, Taejaroenkul S, Smeaton L, Gupta A, Singini IL, Lama JR, et al. A randomized comparison of anthropomorphic changes with preferred and alternative efavirenz-based antiretroviral regimens in diverse multinational settings. Open Forum Infect Dis. 2015;2(3):ofv095. https://doi.org/10.1093/ofid/ofv095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ilozue C, Howe B, Shaw S, Haigh K, Hussey J, Price DA, et al. Obesity in the HIV-infected population in Northeast England: a particular issue in Black-African women. Int J STD AIDS. 2017;28(3):284–9. https://doi.org/10.1177/0956462416649131.

    Article  CAS  PubMed  Google Scholar 

  31. Amorosa V, Synnestvedt M, Gross R, Friedman H, MacGregor RR, Gudonis D, et al. A tale of 2 epidemics: the intersection between obesity and HIV infection in Philadelphia. J Acquir Immune Defic Syndr. 2005;39(5):557–61.

    PubMed  Google Scholar 

  32. Bares SH, Smeaton LM, Xu A, Godfrey C, McComsey GA. HIV-infected women gain more weight than HIV-infected men following the initiation of antiretroviral therapy. J Women's Health (Larchmt). 2018;27(9):1162–9. https://doi.org/10.1089/jwh.2017.6717.

    Article  Google Scholar 

  33. Taylor BS, Liang Y, Garduno LS, Walter EA, Gerardi MB, Anstead GM, et al. High risk of obesity and weight gain for HIV-infected uninsured minorities. J Acquir Immune Defic Syndr. 2014;65(2):e33–40. https://doi.org/10.1097/QAI.0000000000000010.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flint AJ, Rexrode KM, Hu FB, Glynn RJ, Caspard H, Manson JE, et al. Body mass index, waist circumference, and risk of coronary heart disease: a prospective study among men and women. Obes Res Clin Pract. 2010;4(3):e171–e81. https://doi.org/10.1016/j.orcp.2010.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bays HE, Chapman RH, Grandy S, Group SI. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: comparison of data from two national surveys. Int J Clin Pract. 2007;61(5):737–47. https://doi.org/10.1111/j.1742-1241.2007.01336.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117–28. https://doi.org/10.1097/NT.0000000000000092.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Janssen I, Katzmarzyk PT, Ross R. Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr. 2004;79(3):379–84. https://doi.org/10.1093/ajcn/79.3.379.

    Article  CAS  PubMed  Google Scholar 

  38. Savva SC, Lamnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis Diabetes Metab Syndr Obes. 2013;6:403–19. https://doi.org/10.2147/DMSO.S34220.

    Article  PubMed  Google Scholar 

  39. Beraldo RA, Meliscki GC, Silva BR, Navarro AM, Bollela VR, Schmidt A, et al. Anthropometric measures of central adiposity are highly concordant with predictors of cardiovascular disease risk in HIV patients. Am J Clin Nutr. 2018;107(6):883–93. https://doi.org/10.1093/ajcn/nqy049.

    Article  PubMed  Google Scholar 

  40. Dimala CA, Ngu RC, Kadia BM, Tianyi FL, Choukem SP. Markers of adiposity in HIV/AIDS patients: agreement between waist circumference, waist-to-hip ratio, waist-to-height ratio and body mass index. PLoS One. 2018;13(3):e0194653. https://doi.org/10.1371/journal.pone.0194653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Camhi SM, Bray GA, Bouchard C, Greenway FL, Johnson WD, Newton RL, et al. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: sex and race differences. Obesity (Silver Spring). 2011;19(2):402–8. https://doi.org/10.1038/oby.2010.248.

    Article  Google Scholar 

  42. Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Am J Clin Nutr. 2007;85(5):1197–202. https://doi.org/10.1093/ajcn/85.5.1197.

    Article  CAS  PubMed  Google Scholar 

  43. Fourman LT, Kileel EM, Hubbard J, Holmes T, Anderson EJ, Looby SE, et al. Comparison of visceral fat measurement by dual-energy X-ray absorptiometry to computed tomography in HIV and non-HIV. Nutr Diabetes. 2019;9(1):6. https://doi.org/10.1038/s41387-019-0073-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lake JE, Moser C, Johnston L, Magyar C, Nelson SD, Erlandson KM, et al. CT fat density accurately reflects histologic fat quality in adults with HIV on and off antiretroviral therapy. J Clin Endocrinol Metab. 2019;104(10):4857–64. https://doi.org/10.1210/jc.2018-02785.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Macallan DC, Noble C, Baldwin C, Jebb SA, Prentice AM, Coward WA, et al. Energy expenditure and wasting in human immunodeficiency virus infection. N Engl J Med. 1995;333(2):83–8. https://doi.org/10.1056/NEJM199507133330202.

    Article  CAS  PubMed  Google Scholar 

  46. Grunfeld C, Pang M, Shimizu L, Shigenaga JK, Jensen P, Feingold KR. Resting energy expenditure, caloric intake, and short-term weight change in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Am J Clin Nutr. 1992;55(2):455–60. https://doi.org/10.1093/ajcn/55.2.455.

    Article  CAS  PubMed  Google Scholar 

  47. Macallan DC, McNurlan MA, Milne E, Calder AG, Garlick PJ, Griffin GE. Whole-body protein turnover from leucine kinetics and the response to nutrition in human immunodeficiency virus infection. Am J Clin Nutr. 1995;61(4):818–26. https://doi.org/10.1093/ajcn/61.4.818.

    Article  CAS  PubMed  Google Scholar 

  48. Borges AH, O’Connor JL, Phillips AN, Ronsholt FF, Pett S, Vjecha MJ, et al. Factors associated with plasma IL-6 levels during HIV infection. J Infect Dis. 2015;212(4):585–95. https://doi.org/10.1093/infdis/jiv123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bakal DR, Coelho LE, Luz PM, Clark JL, De Boni RB, Cardoso SW, et al. Obesity following ART initiation is common and influenced by both traditional and HIV-/ART-specific risk factors. J Antimicrob Chemother. 2018;73(8):2177–85. https://doi.org/10.1093/jac/dky145.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shlay JC, Bartsch G, Peng G, Wang J, Grunfeld C, Gibert CL, et al. Long-term body composition and metabolic changes in antiretroviral naive persons randomized to protease inhibitor-, nonnucleoside reverse transcriptase inhibitor-, or protease inhibitor plus nonnucleoside reverse transcriptase inhibitor-based strategy. J Acquir Immune Defic Syndr. 2007;44(5):506–17. https://doi.org/10.1097/QAI.0b013e31804216cf.

    Article  CAS  PubMed  Google Scholar 

  51. McComsey GA, Kitch D, Sax PE, Tebas P, Tierney C, Jahed NC, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG study A5224s. Clin Infect Dis. 2011;53(2):185–96. https://doi.org/10.1093/cid/cir324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Podany AT, Scarsi KK, Fletcher CV. Comparative clinical pharmacokinetics and pharmacodynamics of HIV-1 integrase Strand transfer inhibitors. Clin Pharmacokinet. 2017;56(1):25–40. https://doi.org/10.1007/s40262-016-0424-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park TE, Mohamed A, Kalabalik J, Sharma R. Review of integrase strand transfer inhibitors for the treatment of human immunodeficiency virus infection. Expert Rev Anti-Infect Ther. 2015;13(10):1195–212. https://doi.org/10.1586/14787210.2015.1075393.

    Article  CAS  PubMed  Google Scholar 

  54. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. Available at http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 14 Nov 2019.

  55. Bourgi K, Rebeiro PF, Turner M, Castilho JL, Hulgan T, Raffanti SP, et al. Greater weight gain in treatment naive persons starting Dolutegravir-based antiretroviral therapy. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz407.

  56. Menard A, Meddeb L, Tissot-Dupont H, Ravaux I, Dhiver C, Mokhtari S, et al. Dolutegravir and weight gain: an unexpected bothering side effect? Aids. 2017;31(10):1499–500.

    Article  PubMed  Google Scholar 

  57. Rizzardo S, Lanzafame M, Lattuada E, Luise D, Vincenzi M, Tacconelli E, et al. Dolutegravir monotherapy and body weight gain in antiretroviral naive patients. AIDS. 2019;33(10):1673–4. https://doi.org/10.1097/QAD.0000000000002245.

    Article  PubMed  Google Scholar 

  58. Norwood J, Turner M, Bofill C, Rebeiro P, Shepherd B, Bebawy S, et al. Brief report: weight gain in persons with HIV switched from Efavirenz-based to integrase atrand transfer inhibitor-based regimens. J Acquir Immune Defic Syndr. 2017;76(5):527–31. https://doi.org/10.1097/QAI.0000000000001525.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bhagwat P, Ofotokun I, McComsey GA, Brown TT, Moser C, Sugar CA, et al. Changes in waist circumference in hiv-infected individuals initiating a raltegravir or protease inhibitor regimen: effects of sex and race. Open Forum Infect Dis. 2018;5(11):ofy201. https://doi.org/10.1093/ofid/ofy201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. • NAMSAL ANRS 12313 Study Group, Kouanfack C, Mpoudi-Etame M, Omgba Bassega P, Eymard-Duvernay S, Leroy S, et al. Dolutegravir-based or low-dose efavirenz-based regimen for the treatment of HIV-1. N Engl J Med. 2019;381(9):816–26. https://doi.org/10.1056/NEJMoa1904340. This recent randomized controlled trial found a dolutegravir-containing regimen was associated with greater weight gain than efavirenz-containing regimen.

    Article  Google Scholar 

  61. Gomez M, Seybold U, Roider J, Harter G, Bogner JR. A retrospective analysis of weight changes in HIV-positive patients switching from a tenofovir disoproxil fumarate (TDF)- to a tenofovir alafenamide fumarate (TAF)-containing treatment regimen in one German university hospital in 2015-2017. Infection. 2019;47(1):95–102. https://doi.org/10.1007/s15010-018-1227-0.

    Article  CAS  PubMed  Google Scholar 

  62. Couturier J, Winchester LC, Suliburk JW, Wilkerson GK, Podany AT, Agarwal N, et al. Adipocytes impair efficacy of antiretroviral therapy. Antivir Res. 2018;154:140–8. https://doi.org/10.1016/j.antiviral.2018.04.002.

    Article  CAS  PubMed  Google Scholar 

  63. Diaz-Delfin J, Domingo P, Wabitsch M, Giralt M, Villarroya F. HIV-1 Tat protein impairs adipogenesis and induces the expression and secretion of proinflammatory cytokines in human SGBS adipocytes. Antivir Ther. 2012;17(3):529–40. https://doi.org/10.3851/IMP2021.

    Article  CAS  PubMed  Google Scholar 

  64. Agarwal N, Iyer D, Patel SG, Sekhar RV, Phillips TM, Schubert U, et al. HIV-1 Vpr induces adipose dysfunction in vivo through reciprocal effects on PPAR/GR co-regulation. Sci Transl Med. 2013;5(213):213ra164. https://doi.org/10.1126/scitranslmed.3007148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Otake K, Omoto S, Yamamoto T, Okuyama H, Okada H, Okada N, et al. HIV-1 Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated receptors. AIDS. 2004;18(2):189–98. https://doi.org/10.1097/00002030-200401230-00007.

    Article  CAS  PubMed  Google Scholar 

  66. Bacchetti P, Gripshover B, Grunfeld C, Heymsfield S, McCreath H, Osmond D, et al. Fat distribution in men with HIV infection. J Acquir Immune Defic Syndr. 2005;40(2):121–31. https://doi.org/10.1097/01.qai.0000182230.47819.aa.

    Article  PubMed  Google Scholar 

  67. Price J, Hoy J, Ridley E, Nyulasi I, Paul E, Woolley I. Changes in the prevalence of lipodystrophy, metabolic syndrome and cardiovascular disease risk in HIV-infected men. Sex Health. 2015;12(3):240–8. https://doi.org/10.1071/SH14084.

    Article  PubMed  Google Scholar 

  68. Kosmiski L, Kuritzkes D, Hamilton J, Sharp T, Lichtenstien K, Hill J, et al. Fat distribution is altered in HIV-infected men without clinical evidence of the HIV lipodystrophy syndrome. HIV Med. 2003;4(3):235–40.

    Article  CAS  PubMed  Google Scholar 

  69. Stanley TL, Grinspoon SK. Body composition and metabolic changes in HIV-infected patients. J Infect Dis. 2012;205(Suppl 3):S383–90. https://doi.org/10.1093/infdis/jis205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Leroyer S, Vatier C, Kadiri S, Quette J, Chapron C, Capeau J, et al. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue. J Lipid Res. 2011;52(2):207–20. https://doi.org/10.1194/jlr.M000869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gallego-Escuredo JM, Villarroya J, Domingo P, Targarona EM, Alegre M, Domingo JC, et al. Differentially altered molecular signature of visceral adipose tissue in HIV-1-associated lipodystrophy. J Acquir Immune Defic Syndr. 2013;64(2):142–8. https://doi.org/10.1097/QAI.0b013e31829bdb67.

    Article  CAS  PubMed  Google Scholar 

  72. Hadigan C, Borgonha S, Rabe J, Young V, Grinspoon S. Increased rates of lipolysis among human immunodeficiency virus-infected men receiving highly active antiretroviral therapy. Metabolism. 2002;51(9):1143–7. https://doi.org/10.1053/meta.2002.34704.

    Article  CAS  PubMed  Google Scholar 

  73. Sekhar RV, Jahoor F, Pownall HJ, Rehman K, Gaubatz J, Iyer D, et al. Severely dysregulated disposal of postprandial triacylglycerols exacerbates hypertriacylglycerolemia in HIV lipodystrophy syndrome. Am J Clin Nutr. 2005;81(6):1405–10. https://doi.org/10.1093/ajcn/81.6.1405.

    Article  CAS  PubMed  Google Scholar 

  74. Sekhar RV, Jahoor F, White AC, Pownall HJ, Visnegarwala F, Rodriguez-Barradas MC, et al. Metabolic basis of HIV-lipodystrophy syndrome. Am J Physiol Endocrinol Metab. 2002;283(2):E332–7. https://doi.org/10.1152/ajpendo.00058.2002.

    Article  CAS  PubMed  Google Scholar 

  75. Hellerstein MK, Grunfeld C, Wu K, Christiansen M, Kaempfer S, Kletke C, et al. Increased de novo hepatic lipogenesis in human immunodeficiency virus infection. J Clin Endocrinol Metab. 1993;76(3):559–65. https://doi.org/10.1210/jcem.76.3.8445011.

    Article  CAS  PubMed  Google Scholar 

  76. Orlando G, Guaraldi G, Zona S, Carli F, Bagni P, Menozzi M, et al. Ectopic fat is linked to prior cardiovascular events in men with HIV. J Acquir Immune Defic Syndr. 2012;59(5):494–7. https://doi.org/10.1097/QAI.0b013e31824c8397.

    Article  PubMed  Google Scholar 

  77. Guaraldi G, Scaglioni R, Zona S, Orlando G, Carli F, Ligabue G, et al. Epicardial adipose tissue is an independent marker of cardiovascular risk in HIV-infected patients. AIDS. 2011;25(9):1199–205. https://doi.org/10.1097/QAD.0b013e3283474b9f.

    Article  PubMed  Google Scholar 

  78. Iantorno M, Soleimanifard S, Schar M, Brown TT, Bonanno G, Barditch-Crovo P, et al. Regional coronary endothelial dysfunction is related to the degree of local epicardial fat in people with HIV. Atherosclerosis. 2018;278:7–14. https://doi.org/10.1016/j.atherosclerosis.2018.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gan SK, Samaras K, Thompson CH, Kraegen EW, Carr A, Cooper DA, et al. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes. 2002;51(11):3163–9. https://doi.org/10.2337/diabetes.51.11.3163.

    Article  CAS  PubMed  Google Scholar 

  80. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest. 2017;127(1):43–54. https://doi.org/10.1172/JCI88880.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Reeds DN, Yarasheski KE, Fontana L, Cade WT, Laciny E, DeMoss A, et al. Alterations in liver, muscle, and adipose tissue insulin sensitivity in men with HIV infection and dyslipidemia. Am J Physiol Endocrinol Metab. 2006;290(1):E47–53. https://doi.org/10.1152/ajpendo.00236.2005.

    Article  CAS  PubMed  Google Scholar 

  82. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8. https://doi.org/10.1126/science.271.5249.665.

    Article  CAS  PubMed  Google Scholar 

  83. Lumeng CN, Deyoung SM, Saltiel AR. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am J Physiol Endocrinol Metab. 2007;292(1):E166–74. https://doi.org/10.1152/ajpendo.00284.2006.

    Article  CAS  PubMed  Google Scholar 

  84. Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, et al. Interleukin-1beta mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab. 2014;307(3):E289–304. https://doi.org/10.1152/ajpendo.00430.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jan V, Cervera P, Maachi M, Baudrimont M, Kim M, Vidal H, et al. Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther. 2004;9(4):555–64.

    CAS  PubMed  Google Scholar 

  86. Damouche A, Pourcher G, Pourcher V, Benoist S, Busson E, Lataillade JJ, et al. High proportion of PD-1-expressing CD4(+) T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur J Immunol. 2017;47(12):2113–23. https://doi.org/10.1002/eji.201747060.

    Article  CAS  PubMed  Google Scholar 

  87. Koethe JR, McDonnell W, Kennedy A, Abana CO, Pilkinton M, Setliff I, et al. Adipose tissue is enriched for activated and late-differentiated CD8+ T cells and shows distinct CD8+ receptor usage, compared with blood in HIV-infected persons. J Acquir Immune Defic Syndr. 2018;77(2):e14–21. https://doi.org/10.1097/QAI.0000000000001573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown TT, Cole SR, Li X, Kingsley LA, Palella FJ, Riddler SA, et al. Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med. 2005;165(10):1179–84. https://doi.org/10.1001/archinte.165.10.1179.

    Article  PubMed  Google Scholar 

  89. Capeau J, Bouteloup V, Katlama C, Bastard JP, Guiyedi V, Salmon-Ceron D, et al. Ten-year diabetes incidence in 1046 HIV-infected patients started on a combination antiretroviral treatment. AIDS. 2012;26(3):303–14. https://doi.org/10.1097/QAD.0b013e32834e8776.

    Article  CAS  PubMed  Google Scholar 

  90. De Wit S, Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the data collection on adverse events of anti-HIV drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–9. https://doi.org/10.2337/dc07-2013.

    Article  PubMed  Google Scholar 

  91. Bastard JP, Couffignal C, Fellahi S, Bard JM, Mentre F, Salmon D, et al. Diabetes and dyslipidaemia are associated with oxidative stress independently of inflammation in long-term antiretroviral-treated HIV-infected patients. Diabetes Metab. 2019. https://doi.org/10.1016/j.diabet.2019.02.008.

    Article  CAS  Google Scholar 

  92. McDonnell WJ, Koethe JR, Mallal SA, Pilkinton MA, Kirabo A, Ameka MK, et al. High CD8 T-cell receptor Clonality and altered CDR3 properties are associated with elevated Isolevuglandins in adipose tissue during diet-induced obesity. Diabetes. 2018;67(11):2361–76. https://doi.org/10.2337/db18-0040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Damouche A, Lazure T, Avettand-Fenoel V, Huot N, Dejucq-Rainsford N, Satie AP, et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 2015;11(9):e1005153. https://doi.org/10.1371/journal.ppat.1005153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Focosi D, Bestagno M, Burrone O, Petrini M. CD57+ T lymphocytes and functional immune deficiency. J Leukoc Biol. 2010;87(1):107–16. https://doi.org/10.1189/jlb.0809566.

    Article  CAS  PubMed  Google Scholar 

  95. Palmer BE, Blyveis N, Fontenot AP, Wilson CC. Functional and phenotypic characterization of CD57+CD4+ T cells and their association with HIV-1-induced T cell dysfunction. J Immunol. 2005;175(12):8415–23.

    Article  CAS  PubMed  Google Scholar 

  96. Wanjalla CN, McDonnell WJ, Barnett L, Simmons JD, Furch BD, Lima MC, et al. Adipose tissue in persons with HIV is enriched for CD4(+) T effector memory and T effector memory RA(+) cells, which show higher CD69 expression and CD57, CX3CR1, GPR56 co-expression with increasing glucose intolerance. Front Immunol. 2019;10:408. https://doi.org/10.3389/fimmu.2019.00408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gordon CL, Lee LN, Swadling L, Hutchings C, Zinser M, Highton AJ, et al. Induction and maintenance of CX3CR1-intermediate peripheral memory CD8(+) T cells by persistent viruses and vaccines. Cell Rep. 2018;23(3):768–82. https://doi.org/10.1016/j.celrep.2018.03.074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, et al. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol. 2002;168(12):6173–80.

    Article  CAS  PubMed  Google Scholar 

  99. Pachnio A, Ciaurriz M, Begum J, Lal N, Zuo J, Beggs A, et al. Cytomegalovirus infection leads to development of high frequencies of cytotoxic virus-specific CD4+ T cells targeted to vascular endothelium. PLoS Pathog. 2016;12(9):e1005832. https://doi.org/10.1371/journal.ppat.1005832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Peng YM, van de Garde MD, Cheng KF, Baars PA, Remmerswaal EB, van Lier RA, et al. Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol. 2011;90(4):735–40. https://doi.org/10.1189/jlb.0211092.

    Article  CAS  PubMed  Google Scholar 

  101. McMahon CN, Petoumenos K, Hesse K, Carr A, Cooper DA, Samaras K. High rates of incident diabetes and prediabetes are evident in men with treated HIV followed for 11 years. AIDS. 2018;32(4):451–9. https://doi.org/10.1097/QAD.0000000000001709.

    Article  PubMed  Google Scholar 

  102. Nansseu JR, Bigna JJ, Kaze AD, Noubiap JJ. Incidence and risk factors for prediabetes and diabetes mellitus among HIV-infected adults on antiretroviral therapy: a systematic review and meta-analysis. Epidemiology. 2018;29(3):431–41. https://doi.org/10.1097/EDE.0000000000000815.

    Article  PubMed  Google Scholar 

  103. Butt AA, McGinnis K, Rodriguez-Barradas MC, Crystal S, Simberkoff M, Goetz MB, et al. HIV infection and the risk of diabetes mellitus. AIDS. 2009;23(10):1227–34. https://doi.org/10.1097/QAD.0b013e32832bd7af.

    Article  PubMed  Google Scholar 

  104. Duncan AD, Goff LM, Peters BS. Type 2 diabetes prevalence and its risk factors in HIV: a cross-sectional study. PLoS One. 2018;13(3):e0194199. https://doi.org/10.1371/journal.pone.0194199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Putcharoen O, Wattanachanya L, Sophonphan J, Siwamogsatham S, Sapsirisavat V, Gatechompol S, et al. New-onset diabetes in HIV-treated adults: predictors, long-term renal and cardiovascular outcomes. AIDS. 2017;31(11):1535–43. https://doi.org/10.1097/QAD.0000000000001496.

    Article  PubMed  Google Scholar 

  106. Brown TT, Tassiopoulos K, Bosch RJ, Shikuma C, McComsey GA. Association between systemic inflammation and incident diabetes in HIV-infected patients after initiation of antiretroviral therapy. Diabetes Care. 2010;33(10):2244–9. https://doi.org/10.2337/dc10-0633.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Neuhaus J, Jacobs DR Jr, Baker JV, Calmy A, Duprez D, La Rosa A, et al. Markers of inflammation, coagulation, and renal function are elevated in adults with HIV infection. J Infect Dis. 2010;201(12):1788–95. https://doi.org/10.1086/652749.

    Article  CAS  PubMed  Google Scholar 

  108. Mave V, Erlandson KM, Gupte N, Balagopal A, Asmuth DM, Campbell TB, et al. Inflammation and change in body weight with antiretroviral therapy initiation in a multinational cohort of HIV-infected adults. J Infect Dis. 2016;214(1):65–72. https://doi.org/10.1093/infdis/jiw096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280(5):E745–51. https://doi.org/10.1152/ajpendo.2001.280.5.E745.

    Article  CAS  PubMed  Google Scholar 

  110. Koethe JR, Grome H, Jenkins CA, Kalams SA, Sterling TR. The metabolic and cardiovascular consequences of obesity in persons with HIV on long-term antiretroviral therapy. AIDS. 2016;30(1):83–91. https://doi.org/10.1097/QAD.0000000000000893.

    Article  CAS  PubMed  Google Scholar 

  111. Lake JE, Li X, Palella FJ Jr, Erlandson KM, Wiley D, Kingsley L, et al. Metabolic health across the BMI spectrum in HIV-infected and HIV-uninfected men. AIDS. 2018;32(1):49–57. https://doi.org/10.1097/QAD.0000000000001651.

    Article  PubMed  Google Scholar 

  112. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol. 2011;17(1):3–16. https://doi.org/10.1007/s13365-010-0006-1.

    Article  CAS  Google Scholar 

  113. Sattler FR, He J, Letendre S, Wilson C, Sanders C, Heaton R, et al. Abdominal obesity contributes to neurocognitive impairment in HIV-infected patients with increased inflammation and immune activation. J Acquir Immune Defic Syndr. 2015;68(3):281–8. https://doi.org/10.1097/QAI.0000000000000458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lake JE, Popov M, Post WS, Palella FJ, Sacktor N, Miller EN, et al. Visceral fat is associated with brain structure independent of human immunodeficiency virus infection status. J Neuro-Oncol. 2017;23(3):385–93. https://doi.org/10.1007/s13365-016-0507-7.

    Article  CAS  Google Scholar 

  115. Yu B, Pasipanodya E, Montoya JL, Moore RC, Gianella S, McCutchan A, et al. Metabolic syndrome and neurocognitive deficits in HIV infection. J Acquir Immune Defic Syndr. 2019;81(1):95–101. https://doi.org/10.1097/QAI.0000000000001964.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Friis-Moller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, Reiss P, et al. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003;349(21):1993–2003. https://doi.org/10.1056/NEJMoa030218.

    Article  PubMed  Google Scholar 

  117. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92(7):2506–12. https://doi.org/10.1210/jc.2006-2190.

    Article  CAS  PubMed  Google Scholar 

  118. Chow FC, Regan S, Feske S, Meigs JB, Grinspoon SK, Triant VA. Comparison of ischemic stroke incidence in HIV-infected and non-HIV-infected patients in a US health care system. J Acquir Immune Defic Syndr. 2012;60(4):351–8. https://doi.org/10.1097/QAI.0b013e31825c7f24.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Shah ASV, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation. 2018;138(11):1100–12. https://doi.org/10.1161/CIRCULATIONAHA.117.033369.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Freiberg MS, Chang CC, Kuller LH, Skanderson M, Lowy E, Kraemer KL, et al. HIV infection and the risk of acute myocardial infarction. JAMA Intern Med. 2013;173(8):614–22. https://doi.org/10.1001/jamainternmed.2013.3728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Duprez DA, Neuhaus J, Kuller LH, Tracy R, Belloso W, De Wit S, et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS One. 2012;7(9):e44454. https://doi.org/10.1371/journal.pone.0044454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baker JV, Duprez D, Rapkin J, Hullsiek KH, Quick H, Grimm R, et al. Untreated HIV infection and large and small artery elasticity. J Acquir Immune Defic Syndr. 2009;52(1):25–31. https://doi.org/10.1097/qai.0b013e3181b02e6a.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Iantorno M, Schar M, Soleimanifard S, Brown TT, Moore R, Barditch-Crovo P, et al. Coronary artery endothelial dysfunction is present in HIV-positive individuals without significant coronary artery disease. AIDS. 2017;31(9):1281–9. https://doi.org/10.1097/QAD.0000000000001469.

    Article  CAS  PubMed  Google Scholar 

  124. Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham heart study. Eur Heart J. 2009;30(7):850–6. https://doi.org/10.1093/eurheartj/ehn573.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Weber R, Sabin CA, Friis-Møller N, Reiss P, El-Sadr WM, Kirk O, et al. Liver-related deaths in persons infected with the human immunodeficiency virus: the D:a:D study. Arch Intern Med. 2006;166(15):1632–41. https://doi.org/10.1001/archinte.166.15.1632.

    Article  PubMed  Google Scholar 

  126. • Maurice JB, Patel A, Scott AJ, Patel K, Thursz M, Lemoine M. Prevalence and risk factors of nonalcoholic fatty liver disease in HIV-monoinfection. AIDS. 2017;31(11):1621–32. https://doi.org/10.1097/QAD.0000000000001504. This meta-analysis of five studies reported prevalence and associated risk factors for steatosis, NASH and fibrosis among PWH.

    Article  PubMed  Google Scholar 

  127. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

    Article  PubMed  Google Scholar 

  128. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. 2017;377(21):2063–72. https://doi.org/10.1056/NEJMra1503519.

    Article  CAS  PubMed  Google Scholar 

  129. Lui G, Wong VW, Wong GL, Chu WC, Wong CK, Yung IM, et al. Liver fibrosis and fatty liver in Asian HIV-infected patients. Aliment Pharmacol Ther. 2016;44(4):411–21. https://doi.org/10.1111/apt.13702.

    Article  CAS  PubMed  Google Scholar 

  130. Vodkin I, Valasek MA, Bettencourt R, Cachay E, Loomba R. Clinical, biochemical and histological differences between HIV-associated NAFLD and primary NAFLD: a case-control study. Aliment Pharmacol Ther. 2015;41(4):368–78. https://doi.org/10.1111/apt.13052.

    Article  CAS  PubMed  Google Scholar 

  131. Crum-Cianflone N, Krause D, Wessman D, Medina S, Stepenosky J, Brandt C, et al. Fatty liver disease is associated with underlying cardiovascular disease in HIV-infected persons(*). HIV Med. 2011;12(8):463–71. https://doi.org/10.1111/j.1468-1293.2010.00904.x.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zizza A, Guido M, Tumolo MR, De Donno A, Bagordo F, Grima P. Atherosclerosis is associated with a higher risk of hepatic steatosis in HIV-infected patients. J Prev Med Hyg. 2017;58(3):E219–E24.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Mohr R, Boesecke C, Dold L, Schierwagen R, Schwarze-Zander C, Wasmuth JC, et al. Return-to-health effect of modern combined antiretroviral therapy potentially predisposes HIV patients to hepatic steatosis. Medicine (Baltimore). 2018;97(17):e0462. https://doi.org/10.1097/MD.0000000000010462.

    Article  Google Scholar 

  134. Dewar C, Anstee QM, Price DA, Payne B. Central obesity and nonalcoholic fatty liver disease in people living with HIV: a case for targeted screening? HIV Med. 2019;20(1):e1–2. https://doi.org/10.1111/hiv.12674.

    Article  CAS  PubMed  Google Scholar 

  135. Reeds DN, Mittendorfer B, Patterson BW, Powderly WG, Yarasheski KE, Klein S. Alterations in lipid kinetics in men with HIV-dyslipidemia. Am J Physiol Endocrinol Metab. 2003;285(3):E490–7. https://doi.org/10.1152/ajpendo.00118.2003.

    Article  CAS  PubMed  Google Scholar 

  136. Lemoine M, Barbu V, Girard PM, Kim M, Bastard JP, Wendum D, et al. Altered hepatic expression of SREBP-1 and PPARgamma is associated with liver injury in insulin-resistant lipodystrophic HIV-infected patients. AIDS. 2006;20(3):387–95. https://doi.org/10.1097/01.aids.0000206503.01536.11.

    Article  CAS  PubMed  Google Scholar 

  137. Moreno-Torres A, Domingo P, Pujol J, Blanco-Vaca F, Arroyo JA, Sambeat MA. Liver triglyceride content in HIV-1-infected patients on combination antiretroviral therapy studied with 1H-MR spectroscopy. Antivir Ther. 2007;12(2):195–203.

    CAS  PubMed  Google Scholar 

  138. Price JC, Seaberg EC, Latanich R, Budoff MJ, Kingsley LA, Palella FJ, et al. Risk factors for fatty liver in the multicenter AIDS cohort study. Am J Gastroenterol. 2014;109(5):695–704. https://doi.org/10.1038/ajg.2014.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Akhtar MA, Mathieson K, Arey B, Post J, Prevette R, Hillier A, et al. Hepatic histopathology and clinical characteristics associated with antiretroviral therapy in HIV patients without viral hepatitis. Eur J Gastroenterol Hepatol. 2008;20(12):1194–204. https://doi.org/10.1097/MEG.0b013e328305b9e0.

    Article  CAS  PubMed  Google Scholar 

  140. Guaraldi G, Squillace N, Stentarelli C, Orlando G, D'Amico R, Ligabue G, et al. Nonalcoholic fatty liver disease in HIV-infected patients referred to a metabolic clinic: prevalence, characteristics, and predictors. Clin Infect Dis. 2008;47(2):250–7. https://doi.org/10.1086/589294.

    Article  PubMed  Google Scholar 

  141. Perazzo H, Cardoso SW, Yanavich C, Nunes EP, Morata M, Gorni N, et al. Predictive factors associated with liver fibrosis and steatosis by transient elastography in patients with HIV mono-infection under long-term combined antiretroviral therapy. J Int AIDS Soc. 2018;21(11):e25201. https://doi.org/10.1002/jia2.25201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Eckert C, Klein N, Kornek M, Lukacs-Kornek V. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front Immunol. 2015;6:179. https://doi.org/10.3389/fimmu.2015.00179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61(3):1066–79. https://doi.org/10.1002/hep.27332.

    Article  PubMed  Google Scholar 

  144. Sakaguchi S, Takahashi S, Sasaki T, Kumagai T, Nagata K. Progression of alcoholic and non-alcoholic steatohepatitis: common metabolic aspects of innate immune system and oxidative stress. Drug Metab Pharmacokinet. 2011;26(1):30–46.

    Article  CAS  PubMed  Google Scholar 

  145. Roubenoff R, Weiss L, McDermott A, Heflin T, Cloutier GJ, Wood M, et al. A pilot study of exercise training to reduce trunk fat in adults with HIV-associated fat redistribution. AIDS. 1999;13(11):1373–5. https://doi.org/10.1097/00002030-199907300-00015.

    Article  CAS  PubMed  Google Scholar 

  146. Engelson ES, Agin D, Kenya S, Werber-Zion G, Luty B, Albu JB, et al. Body composition and metabolic effects of a diet and exercise weight loss regimen on obese, HIV-infected women. Metabolism. 2006;55(10):1327–36. https://doi.org/10.1016/j.metabol.2006.05.018.

    Article  CAS  PubMed  Google Scholar 

  147. Fitch KV, Anderson EJ, Hubbard JL, Carpenter SJ, Waddell WR, Caliendo AM, et al. Effects of a lifestyle modification program in HIV-infected patients with the metabolic syndrome. AIDS. 2006;20(14):1843–50. https://doi.org/10.1097/01.aids.0000244203.95758.db.

    Article  CAS  PubMed  Google Scholar 

  148. Thoni GJ, Fedou C, Brun JF, Fabre J, Renard E, Reynes J, et al. Reduction of fat accumulation and lipid disorders by individualized light aerobic training in human immunodeficiency virus infected patients with lipodystrophy and/or dyslipidemia. Diabetes Metab. 2002;28(5):397–404.

    CAS  PubMed  Google Scholar 

  149. Webel AR, Moore SM, Longenecker CT, Currie J, Horvat Davey C, Perazzo J, et al. Randomized controlled trial of the SystemCHANGE intervention on behaviors related to cardiovascular risk in HIV+ adults. J Acquir Immune Defic Syndr. 2018;78(1):23–33. https://doi.org/10.1097/QAI.0000000000001635.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Guariglia DA, Pedro RE, Deminice R, Rosa FT, Peres SB, Franzoi De Moraes SM. Effect of combined training on body composition and metabolic variables in people living with HIV: a randomized clinical trial. Cytokine. 2018;111:505–10. https://doi.org/10.1016/j.cyto.2018.05.028.

    Article  CAS  PubMed  Google Scholar 

  151. Becofsky K, Wing EJ, McCaffery J, Boudreau M, Wing RR. A randomized controlled trial of a behavioral weight loss program for human immunodeficiency virus-infected patients. Clin Infect Dis. 2017;65(1):154–7. https://doi.org/10.1093/cid/cix238.

    Article  PubMed  PubMed Central  Google Scholar 

  152. • Reeds DN, Pietka TA, Yarasheski KE, Cade WT, Patterson BW, Okunade A, et al. HIV infection does not prevent the metabolic benefits of diet-induced weight loss in women with obesity. Obesity (Silver Spring). 2017;25(4):682–8. https://doi.org/10.1002/oby.21793. This study compared diet-induced weight loss and metabolic parameters of women with HIV compared with women without HIV. Weight loss improved insulin sensitivity to the same extent in both groups.

    Article  CAS  PubMed Central  Google Scholar 

  153. Stanley TL, Falutz J, Marsolais C, Morin J, Soulban G, Mamputu JC, et al. Reduction in visceral adiposity is associated with an improved metabolic profile in HIV-infected patients receiving tesamorelin. Clin Infect Dis. 2012;54(11):1642–51. https://doi.org/10.1093/cid/cis251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stanley TL, Feldpausch MN, Oh J, Branch KL, Lee H, Torriani M, et al. Effect of tesamorelin on visceral fat and liver fat in HIV-infected patients with abdominal fat accumulation: a randomized clinical trial. JAMA. 2014;312(4):380–9. https://doi.org/10.1001/jama.2014.8334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37. https://doi.org/10.1001/jama.292.14.1724.

    Article  CAS  PubMed  Google Scholar 

  156. Favre L, Marino L, Roth A, Acierno J Jr, Hans D, Demartines N, et al. The reduction of visceral adipose tissue after roux-en-Y gastric bypass is more pronounced in patients with impaired glucose metabolism. Obes Surg. 2018;28(12):4006–13. https://doi.org/10.1007/s11695-018-3455-x.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73. https://doi.org/10.1016/S0140-6736(15)00075-6.

    Article  PubMed  Google Scholar 

  158. Akbari K, Som R, Sampson M, Abbas SH, Ramus J, Jones G. The effect of bariatric surgery on patients with HIV infection: a literature review. Obes Surg. 2018;28(8):2550–9. https://doi.org/10.1007/s11695-018-3319-4.

    Article  PubMed  Google Scholar 

  159. Selke H, Norris S, Osterholzer D, Fife KH, DeRose B, Gupta SK. Bariatric surgery outcomes in HIV-infected subjects: a case series. AIDS Patient Care STDs. 2010;24(9):545–50. https://doi.org/10.1089/apc.2010.0132.

    Article  PubMed  Google Scholar 

  160. Pourcher G, Peytavin G, Schneider L, Gallien S, Force G, Pourcher V. Bariatric surgery in HIV patients: experience of an obesity reference center in France. Surg Obes Relat Dis. 2017;13(12):1990–6. https://doi.org/10.1016/j.soard.2017.09.514.

    Article  PubMed  Google Scholar 

  161. Sharma G, Strong AT, Boules M, Tu C, Szomstein S, Rosenthal R, et al. Comparative outcomes of bariatric surgery in patients with and without human immunodeficiency virus. Obes Surg. 2018;28(4):1070–9. https://doi.org/10.1007/s11695-017-2996-8.

    Article  PubMed  Google Scholar 

  162. Sharma P, McCarty TR, Ngu JN, O’Donnell M, Njei B. Impact of bariatric surgery in patients with HIV infection: a nationwide inpatient sample analysis, 2004-2014. AIDS. 2018;32(14):1959–65. https://doi.org/10.1097/QAD.0000000000001915.

    Article  PubMed  Google Scholar 

  163. Amouyal C, Buyse M, Lucas-Martini L, Hirt D, Genser L, Torcivia A, et al. Sleeve gastrectomy in morbidly obese HIV patients: focus on anti-retroviral treatment absorption after surgery. Obes Surg. 2018;28(9):2886–93. https://doi.org/10.1007/s11695-018-3308-7.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health grants T32AI00747426, K12HL143956, and R01DK112262.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Koethe.

Ethics declarations

Conflict of Interest

Samuel Bailin, Curtis Gabriel, Celestine Wanjalla, and John Koethe declare that they have no conflicts of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailin, S.S., Gabriel, C.L., Wanjalla, C.N. et al. Obesity and Weight Gain in Persons with HIV. Curr HIV/AIDS Rep 17, 138–150 (2020). https://doi.org/10.1007/s11904-020-00483-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-020-00483-5

Keywords

Navigation