Skip to main content

Advertisement

Log in

HIV Persistence in Adipose Tissue Reservoirs

  • HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to examine the evidence describing adipose tissue as a reservoir for HIV-1 and how this often expansive anatomic compartment contributes to HIV persistence.

Recent Findings

Memory CD4 T cells and macrophages, the major host cells for HIV, accumulate in adipose tissue during HIV/SIV infection of humans and rhesus macaques. Whereas HIV and SIV proviral DNA is detectable in CD4 T cells of multiple fat depots in virtually all infected humans and monkeys examined, viral RNA is less frequently detected, and infected macrophages may be less prevalent in adipose tissue. However, based on viral outgrowth assays, adipose-resident CD4 T cells are latently infected with virus that is replication-competent and infectious. Additionally, adipocytes interact with CD4 T cells and macrophages to promote immune cell activation and inflammation which may be supportive for HIV persistence. Antiviral effector cells, such as CD8 T cells and NK/NKT cells, are abundant in adipose tissue during HIV/SIV infection and typically exceed CD4 T cells, whereas B cells are largely absent from adipose tissue of humans and monkeys. Additionally, CD8 T cells in adipose tissue of HIV patients are activated and have a late differentiated phenotype, with unique TCR clonotypes of less diversity relative to blood CD8 T cells. With respect to the distribution of antiretroviral drugs in adipose tissue, data is limited, but there may be class-specific penetration of fat depots.

Summary

The trafficking of infected immune cells within adipose tissues is a common event during HIV/SIV infection of humans and monkeys, but the virus may be mostly transcriptionally dormant. Viral replication may occur less in adipose tissue compared to other major reservoirs, such as lymphoid tissue, but replication competence and infectiousness of adipose latent virus are comparable to other tissues. Due to the ubiquitous nature of adipose tissue, inflammatory interactions among adipocytes and CD4 T cells and macrophages, and selective distribution of antiretroviral drugs, the sequestration of infected immune cells within fat depots likely represents a major challenge for cure efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. https://doi.org/10.1172/JCI19246.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. https://doi.org/10.1172/JCI19451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Pond CM, Mattacks CA. The activation of the adipose tissue associated with lymph nodes during the early stages of an immune response. Cytokine. 2002;17(3):131–9. https://doi.org/10.1006/cyto.2001.0999.

    Article  CAS  PubMed  Google Scholar 

  4. Pond CM. Paracrine relationships between adipose and lymphoid tissues: implications for the mechanism of HIV-associated adipose redistribution syndrome. Trends Immunol. 2003;24(1):13–8. https://doi.org/10.1016/S1471-4906(02)00004-2.

    Article  CAS  PubMed  Google Scholar 

  5. •• Koethe JR, McDonnell W, Kennedy A, Abana CO, Pilkinton M, Setliff I, et al. Adipose tissue is enriched for activated and late-differentiated CD8+ T cells, and shows distinct CD8+ receptor usage, compared to blood in HIV-infected persons. J Acquir Immune Defic Syndr. 2018;77(2):e14–e21. https://doi.org/10.1097/QAI.0000000000001573. This study demonstrated the presence of HIV-infected CD4 T cells in human adipose tissue and further characterized the TCR repertoire of adipose tissue CD8 T cells.

  6. •• Hsu DC, Wegner MD, Sunyakumthorn P, Silsorn D, Tayamun S, Inthawong D, et al. CD4+ cell infiltration into subcutaneous adipose tissue is not indicative of productively infected cells during acute SHIV infection. J Med Primatol. 2017;46(4):154–7. https://doi.org/10.1111/jmp.12298. This study demonstrated that SHIV-infected CD4 T cells can accumulate in adipose tissue of rhesus macaques after acute infection.

    Article  CAS  PubMed  Google Scholar 

  7. •• Damouche A, Pourcher G, Pourcher V, Benoist S, Busson E, Lataillade JJ, et al. High proportion of PD-1-expressing CD4+ T cells in adipose tissue constitutes an immunomodulatory microenvironment that may support HIV persistence. Eur J Immunol. 2017;47(12):2113–23. https://doi.org/10.1002/eji.201747060. This study extensively phenotyped T cells in adipose tissue of HIV patients and demonstrated that significant proportions of adipose CD4 T cells may persist in states of exhaustion and quiescence.

    Article  CAS  PubMed  Google Scholar 

  8. •• Couturier J, Agarwal N, Nehete PN, Baze WB, Barry MA, Jagannadha Sastry K, et al. Infectious SIV resides in adipose tissue and induces metabolic defects in chronically infected rhesus macaques. Retrovirology. 2016;13(1):30. https://doi.org/10.1186/s12977-016-0260-2. This study was one of the initial reports demonstrating rhesus macaque adipose tissue to be a reservoir for SIV-infected immune cells.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. •• Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, et al. Adipose tissue is a neglected viral reservoir and an inflammatory site during chronic HIV and SIV infection. PLoS Pathog. 2015;11(9):e1005153. https://doi.org/10.1371/journal.ppat.1005153. This study was one of the initial reports demonstrating that human and non-human primate adipose tissue are reservoirs for HIV/SIV-infected CD4 T cells and macrophages.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. •• Couturier J, Suliburk JW, Brown JM, Luke DJ, Agarwal N, Yu X, et al. Human adipose tissue as a reservoir for memory CD4+ T cells and HIV. AIDS. 2015;29(6):667–74. https://doi.org/10.1097/QAD.0000000000000599. This study was one of the initial reports demonstrating human adipose tissue to be a reservoir for HIV-infected immune cells.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. • Dupin N, Buffet M, Marcelin AG, Lamotte C, Gorin I, Ait-Arkoub Z, et al. HIV and antiretroviral drug distribution in plasma and fat tissue of HIV-infected patients with lipodystrophy. AIDS. 2002;16(18):2419–24. This was the first study to investigate the presence of HIV and antiretroviral penetration in adipose tissue. https://doi.org/10.1097/00002030-200212060-00006.

    Article  CAS  PubMed  Google Scholar 

  12. Franke-Fayard B, Fonager J, Braks A, Khan SM, Janse CJ. Sequestration and tissue accumulation of human malaria parasites: can we learn anything from rodent models of malaria? PLoS Pathog. 2010;6(9):e1001032. https://doi.org/10.1371/journal.ppat.1001032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose tissue: a safe haven for parasites? Trends Parasitol. 2017;33(4):276–84. https://doi.org/10.1016/j.pt.2016.11.008.

    Article  PubMed  Google Scholar 

  14. Neyrolles O, Hernández-Pando R, Pietri-Rouxel F, Fornès P, Tailleux L, Barrios Payán JA, et al. Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One. 2006;1(1):e43. https://doi.org/10.1371/journal.pone.0000043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Bechah Y, Paddock CD, Capo C, Mege JL, Raoult D. Adipose tissue serves as a reservoir for recrudescent Rickettsia prowazekii infection in a mouse model. PLoS One. 2010;5(1):e8547. https://doi.org/10.1371/journal.pone.0008547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Hanses F, Kopp A, Bala M, Buechler C, Falk W, Salzberger B, et al. Intracellular survival of Staphylococcus aureus in adipocyte-like differentiated 3T3-L1 cells is glucose dependent and alters cytokine, chemokine, and adipokine secretion. Endocrinology. 2011;152(11):4148–57. https://doi.org/10.1210/en.2011-0103.

    Article  CAS  PubMed  Google Scholar 

  17. Zulian A, Cancello R, Ruocco C, Gentilini D, Di Blasio AM, Danelli P, et al. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohn’s disease. An in vivo and in vitro study. PLoS One. 2013;8(10):e78495. https://doi.org/10.1371/journal.pone.0078495.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Agarwal P, Khan SR, Verma SC, Beg M, Singh K, Mitra K, et al. Mycobacterium tuberculosis persistence in various adipose depots of infected mice and the effect of anti-tubercular therapy. Microbes Infect. 2014;16(7):571–80. https://doi.org/10.1016/j.micinf.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  19. Beigier-Bompadre M, Montagna GN, Kühl AA, Lozza L, Weiner J 3rd, Kupz A, et al. Mycobacterium tuberculosis infection modulates adipose tissue biology. PLoS Pathog. 2017;13(10):e1006676. https://doi.org/10.1371/journal.ppat.1006676.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dhurandhar NV, Whigham LD, Abbott DH, Schultz-Darken NJ, Israel BA, Bradley SM, et al. Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr. 2002;132(10):3155–60.

    Article  CAS  PubMed  Google Scholar 

  21. Vangipuram SD, Yu M, Tian J, Stanhope KL, Pasarica M, Havel PJ, et al. Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells. Int J Obes. 2007;31(1):87–96. https://doi.org/10.1038/sj.ijo.0803366.

    Article  CAS  Google Scholar 

  22. Rogers PM, Mashtalir N, Rathod MA, Dubuisson O, Wang Z, Dasuri K, et al. Metabolically favorable remodeling of human adipose tissue by human adenovirus type 36. Diabetes. 2008;57(9):2321–31. https://doi.org/10.2337/db07-1311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Bouwman JJ, Diepersloot RJ, Visseren FL. Intracellular infections enhance interleukin-6 and plasminogen activator inhibitor 1 production by cocultivated human adipocytes and THP-1 monocytes. Clin Vaccine Immunol. 2009;16(8):1222–7. https://doi.org/10.1128/CVI.00166-09.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Salehian B, Forman SJ, Kandeel FR, Bruner DE, He J, Atkinson RL. Adenovirus 36 DNA in adipose tissue of patient with unusual visceral obesity. Emerg Infect Dis. 2010;16(5):850–2. https://doi.org/10.3201/eid1605.091271.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lin WY, Dubuisson O, Rubicz R, Liu N, Allison DB, Curran JE, et al. Long-term changes in adiposity and glycemic control are associated with past adenovirus infection. Diabetes Care. 2013;36(3):701–7. https://doi.org/10.2337/dc12-1089.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zwezdaryk KJ, Ferris MB, Strong AL, Morris CA, Bunnell BA, Dhurandhar NV, et al. Human cytomegalovirus infection of human adipose-derived stromal/stem cells restricts differentiation along the adipogenic lineage. Adipocyte. 2015;5(1):53–64. https://doi.org/10.1080/21623945.2015.1119957.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–72. https://doi.org/10.1002/emmm.201100159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kruis T, Batra A, Siegmund B. Bacterial translocation—impact on the adipocyte compartment. Front Immunol. 2014;4:510. https://doi.org/10.3389/fimmu.2013.00510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Karrasch T, Schaeffler A. Adipokines and the role of visceral adipose tissue in inflammatory bowel disease. Ann Gastroenterol. 2016;29:424–38. https://doi.org/10.20524/aog.2016.0077.

    PubMed Central  PubMed  Google Scholar 

  30. Schipper HS, Prakken B, Kalkhoven E, Boes M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol Metab. 2012;23(8):407–15. https://doi.org/10.1016/j.tem.2012.05.011.

    Article  CAS  PubMed  Google Scholar 

  31. Koethe JR, Hulgan T, Niswender K. Adipose tissue and immune function: a review of evidence relevant to HIV infection. J Infect Dis. 2013;208(8):1194–201. https://doi.org/10.1093/infdis/jit324.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 201(17):851–9. https://doi.org/10.1016/j.cmet.2013.05.008.

  33. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23. https://doi.org/10.1093/cvr/cvx108.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Balasubramanyam A, Mersmann H, Jahoor F, Phillips TM, Sekhar RV, Schubert U, et al. Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice. Am J Physiol Endocrinol Metab. 2007;292(1):E40–8. https://doi.org/10.1152/ajpendo.00163.2006.

    Article  CAS  PubMed  Google Scholar 

  35. Otake K, Omoto S, Yamamoto T, Okuyama H, Okada H, Okada N, et al. HIV-1 Nef protein in the nucleus influences adipogenesis as well as viral transcription through the peroxisome proliferator-activated receptors. AIDS. 2004;18(2):189–98. https://doi.org/10.1097/00002030-200401230-00007.

    Article  CAS  PubMed  Google Scholar 

  36. Asztalos BF, Mujawar Z, Morrow MP, Grant A, Pushkarsky T, Wanke C, et al. Circulating Nef induces dyslipidemia in simian immunodeficiency virus-infected macaques by suppressing cholesterol efflux. J Infect Dis. 2010;202(4):614–23. https://doi.org/10.1086/654817.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Cheney L, Hou JC, Morrison S, Pessin J, Steigbigel RT. Nef inhibits glucose uptake in adipocytes and contributes to insulin resistance in human immunodeficiency virus type I infection. J Infect Dis. 2011;203(12):1824–31. https://doi.org/10.1093/infdis/jir170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Díaz-Delfín J, Domingo P, Wabitsch M, Giralt M, Villarroya F. HIV-1 Tat protein impairs adipogenesis and induces the expression and secretion of proinflammatory cytokines in human SGBS adipocytes. Antivir Ther. 2012;17(3):529–40. https://doi.org/10.3851/IMP2021.

    Article  CAS  PubMed  Google Scholar 

  39. Agarwal N, Iyer D, Patel SG, Sekhar RV, Phillips TM, Schubert U, et al. HIV-1 Vpr induces adipose dysfunction in vivo through reciprocal effects on PPAR/GR co-regulation. Sci Transl Med. 2013;5(213):213ra164. https://doi.org/10.1126/scitranslmed.3007148.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Agarwal N, Iyer D, Gabbi C, Saha P, Patel SG, Mo Q, et al. HIV-1 viral protein R (Vpr) induces fatty liver in mice via LXRα and PPARα dysregulation: implications for HIV-specific pathogenesis of NAFLD. Sci Rep. 2017;7(1):13362. https://doi.org/10.1038/s41598-017-13835-w.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Koethe JR. Adipose tissue in HIV infection. Compr Physiol. 2017;7:1339–57. https://doi.org/10.1002/cphy.c160028.

    Article  PubMed  Google Scholar 

  42. Munier S, Borjabad A, Lemaire M, Mariot V, Hazan U. In vitro infection of human primary adipose cells with HIV-1: a reassessment. AIDS. 2003;17(17):2537–9. https://doi.org/10.1097/00002030-200311210-00019.

    Article  PubMed  Google Scholar 

  43. Nazari-Shafti TZ, Freisinger E, Roy U, Bulot CT, Senst C, Dupin CL, et al. Mesenchymal stem cell derived hematopoietic cells are permissive to HIV-1 infection. Retrovirology. 2011;8(1):3. https://doi.org/10.1186/1742-4690-8-3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 2013;18(5):759–66. https://doi.org/10.1016/j.cmet.2013.09.017.

    Article  CAS  Google Scholar 

  45. Frasca D, Blomberg BB. Adipose tissue inflammation induces B cell inflammation and decreases B cell function in aging. Front Immunol. 2017;8:1003. https://doi.org/10.3389/fimmu.2017.01003.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Ying W, Wollam J, Ofrecio JM, Bandyopadhyay G, El Ouarrat D, Lee YS, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127(3):1019–30. https://doi.org/10.1172/JCI90350.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243–7. https://doi.org/10.1126/science.1201475.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47. https://doi.org/10.2337/db11-1274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Divoux A, Moutel S, Poitou C, Lacasa D, Veyrie N, Aissat A, et al. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. J Clin Endocrinol Metab. 2012;97(9):E1677–85. https://doi.org/10.1210/jc.2012-1532.

    Article  CAS  PubMed  Google Scholar 

  50. Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med. 2012;18(9):1407–12. https://doi.org/10.1038/nm.2885.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Cho KW, Zamarron BF, Muir LA, Singer K, Porsche CE, DelProposto JB, et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J Immunol. 2016;197(9):3650–61. https://doi.org/10.4049/jimmunol.1600820.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Sundara Rajan S, Longhi MP. Dendritic cells and adipose tissue. Immunology. 2016;149(4):353–61. https://doi.org/10.1111/imm.12653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006;116(1):115–24. https://doi.org/10.1172/JCI24335.

    Article  CAS  PubMed  Google Scholar 

  54. Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115(8):1029–38. https://doi.org/10.1161/CIRCULATIONAHA.106.638379.

    Article  CAS  PubMed  Google Scholar 

  55. Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10):1608–14. https://doi.org/10.1161/ATVBAHA.109.192583.

    Article  CAS  PubMed  Google Scholar 

  56. Kitade H, Sawamoto K, Nagashimada M, Inoue H, Yamamoto Y, Sai Y, et al. CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status. Diabetes. 2012;61(7):1680–90. https://doi.org/10.2337/db11-1506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Deiuliis JA, Oghumu S, Duggineni D, Zhong J, Rutsky J, Banerjee A, et al. CXCR3 modulates obesity-induced visceral adipose inflammation and systemic insulin resistance. Obesity (Silver Spring). 2014;22(5):1264–74. https://doi.org/10.1002/oby.20642.

    Article  CAS  Google Scholar 

  58. Rocha VZ, Folco EJ, Ozdemir C, Sheikine Y, Christen T, Sukhova GK, et al. CXCR3 controls T-cell accumulation in fat inflammation. Arterioscler Thromb Vasc Biol. 2014;34(7):1374–81. https://doi.org/10.1161/ATVBAHA.113.303133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Conroy MJ, Galvin KC, Kavanagh ME, Mongan AM, Doyle SL, Gilmartin N, et al. CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer. Immunol Cell Biol. 2016;94(6):531–7. https://doi.org/10.1038/icb.2016.26.

    Article  CAS  PubMed  Google Scholar 

  60. Hellmann J, Sansbury BE, Holden CR, Tang Y, Wong B, Wysoczynski M, et al. CCR7 maintains nonresolving lymph node and adipose inflammation in obesity. Diabetes. 2016;65(8):2268–81. https://doi.org/10.2337/db15-1689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Orr JS, Kennedy AJ, Hill AA, Anderson-Baucum EK, Hubler MJ, Hasty AH. CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice. Physiol Rep. 2016;4(18):e12971. https://doi.org/10.14814/phy2.12971.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, et al. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One. 2011;6(1):e16376. https://doi.org/10.1371/journal.pone.0016376.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Cipolletta D. Adipose tissue-resident regulatory T cells: phenotypic specialization, functions and therapeutic potential. Immunology. 2014;142(4):517–25. https://doi.org/10.1111/imm.12262.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Deng T, Liu J, Deng Y, Minze L, Xiao X, Wright V, et al. Adipocyte adaptive immunity mediates diet-induced adipose inflammation and insulin resistance by decreasing adipose Treg cells. Nat Commun. 2017;8:15725. https://doi.org/10.1038/ncomms15725.

    Article  CAS  PubMed Central  Google Scholar 

  65. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126(12):4626–39. https://doi.org/10.1172/JCI88606.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol. 2010;185(3):1836–45. https://doi.org/10.4049/jimmunol.1000021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. O'Sullivan TE, Rapp M, Fan X, Weizman OE, Bhardwaj P, Adams NM, et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity. 2016;45(2):428–41. https://doi.org/10.1016/j.immuni.2016.06.016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Boulenouar S, Michelet X, Duquette D, Alvarez D, Hogan AE, Dold C, et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity. 2017;46(2):273–86. https://doi.org/10.1016/j.immuni.2017.01.008.

    Article  CAS  PubMed  Google Scholar 

  69. Newland SA, Mohanta S, Clément M, Taleb S, Walker JA, Nus M, et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat Commun. 2017;8:15781. https://doi.org/10.1038/ncomms15781.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Li H, Richert-Spuhler LE, Evans TI, Gillis J, Connole M, Estes JD, et al. Hypercytotoxicity and rapid loss of NKp44+ innate lymphoid cells during acute SIV infection. PLoS Pathog. 2014;10(12):e1004551. https://doi.org/10.1371/journal.ppat.1004551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kløverpris HN, Kazer SW, Mjösberg J, Mabuka JM, Wellmann A, Ndhlovu Z, et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity. 2016;44(2):391–405. https://doi.org/10.1016/j.immuni.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  72. Krämer B, Goeser F, Lutz P, Glässner A, Boesecke C, Schwarze-Zander C, et al. Compartment-specific distribution of human intestinal innate lymphoid cells is altered in HIV patients under effective therapy. PLoS Pathog. 2017;13(5):e1006373. https://doi.org/10.1371/journal.ppat.1006373.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Jan V, Cervera P, Maachi M, Baudrimont M, Kim M, Vidal H, et al. Altered fat differentiation and adipocytokine expression are inter-related and linked to morphological changes and insulin resistance in HIV-1-infected lipodystrophic patients. Antivir Ther. 2004;9(4):555–64.

    CAS  PubMed  Google Scholar 

  74. Sievers M, Walker UA, Sevastianova K, Setzer B, Wågsäter D, Eriksson P, et al. Gene expression and immunohistochemistry in adipose tissue of HIV type 1-infected patients with nucleoside analogue reverse-transcriptase inhibitor-associated lipoatrophy. J Infect Dis. 2009;200(2):252–62. https://doi.org/10.1086/599986.

    Article  CAS  PubMed  Google Scholar 

  75. Shikuma CM, Gangcuangco LM, Killebrew DA, Libutti DE, Chow DC, Nakamoto BK, et al. The role of HIV and monocytes/macrophages in adipose tissue biology. J Acquir Immune Defic Syndr. 2014;65(2):151–9. https://doi.org/10.1097/01.qai.0000435599.27727.6c.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J, Liu JZ, et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 2013;17(3):411–22. https://doi.org/10.1016/j.cmet.2013.02.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Morris DL, Cho KW, Delproposto JL, Oatmen KE, Geletka LM, Martinez-Santibanez G, et al. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes. 2013;62(8):2762–72. https://doi.org/10.2337/db12-1404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Cho KW, Morris DL, DelProposto JL, Geletka L, Zamarron B, Martinez-Santibanez G, et al. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep. 2014;9(2):605–17. https://doi.org/10.1016/j.celrep.2014.09.004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Xiao L, Yang X, Lin Y, Li S, Jiang J, Qian S, et al. Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes. 2016;40(1):112–20. https://doi.org/10.1038/ijo.2015.145.

    Article  CAS  Google Scholar 

  80. Ioan-Facsinay A, Kwekkeboom JC, Westhoff S, Giera M, Rombouts Y, van Harmelen V, et al. Adipocyte-derived lipids modulate CD4+ T-cell function. Eur J Immunol. 2013;43(6):1578–87. https://doi.org/10.1002/eji.201243096.

    Article  CAS  PubMed  Google Scholar 

  81. Poloni A, Maurizi G, Ciarlantini M, Medici M, Mattiucci D, Mancini S, et al. Interaction between human mature adipocytes and lymphocytes induces T-cell proliferation. Cytotherapy. 2015;17(9):1292–301. https://doi.org/10.1016/j.jcyt.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  82. Arenaccio C, Anticoli S, Manfredi F, Chiozzini C, Olivetta E, Federico M. Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology. 2015;12(1):87. https://doi.org/10.1186/s12977-015-0216-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res. 2016;76(14):4051–7. https://doi.org/10.1158/0008-5472.CAN-16-0651.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang Y, Yu M, Tian W. Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 2016;49(1):3–13. https://doi.org/10.1111/cpr.12233.

    Article  CAS  PubMed  Google Scholar 

  85. Barclay RA, Schwab A, DeMarino C, Akpamagbo Y, Lepene B, Kassaye S, et al. Exosomes from uninfected cells activate transcription of latent HIV-1. J Biol Chem. 2017;292(36):14764. https://doi.org/10.1074/jbc.A117.793521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017;28(1):3–18. https://doi.org/10.1016/j.tem.2016.10.003.

    Article  CAS  PubMed  Google Scholar 

  87. Hong X, Schouest B, Xu H. Effects of exosome on the activation of CD4+ T cells in rhesus macaques: a potential application for HIV latency reactivation. Sci Rep. 2017;7(1):15611. https://doi.org/10.1038/s41598-017-15961-x.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Shrivastav S, Kino T, Cunningham T, Ichijo T, Schubert U, Heinklein P, et al. Human immunodeficiency virus (HIV)-1 viral protein R suppresses transcriptional activity of peroxisome proliferator-activated receptor {gamma} and inhibits adipocyte differentiation: implications for HIV-associated lipodystrophy. Mol Endocrinol. 2008;22(2):234–47. https://doi.org/10.1210/me.2007-0124.

    Article  CAS  PubMed  Google Scholar 

  89. Levy DN, Refaeli Y, MacGregor RR, Weiner DB. Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1994;91(23):10873–7. https://doi.org/10.1073/pnas.91.23.10873.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Romani B, Kamali Jamil R, Hamidi-Fard M, Rahimi P, Momen SB, Aghasadeghi MR, et al. HIV-1 Vpr reactivates latent HIV-1 provirus by inducing depletion of class I HDACs on chromatin. Sci Rep. 2016;6(1):31924. https://doi.org/10.1038/srep31924.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111(6):2307–12. https://doi.org/10.1073/pnas.1318249111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Janneh O, Hoggard PG, Tjia JF, Jones SP, Khoo SH, Maher B, et al. Intracellular disposition and metabolic effects of zidovudine, stavudine and four protease inhibitors in cultured adipocytes. Antivir Ther. 2003;8(5):417–26.

    CAS  PubMed  Google Scholar 

  93. Vernochet C, Azoulay S, Duval D, Guedj R, Cottrez F, Vidal H, et al. Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J Biol Chem. 2005;280(3):2238–43. https://doi.org/10.1074/jbc.M408687200.

    Article  CAS  PubMed  Google Scholar 

  94. Guallar JP, Cano-Soldado P, Aymerich I, Domingo JC, Alegre M, Domingo P, et al. Altered expression of nucleoside transporter genes (SLC28 and SLC29) in adipose tissue from HIV-1-infected patients. Antivir Ther. 2007;12(6):853–63.

    CAS  PubMed  Google Scholar 

  95. Janneh O, Owen A, Bray PG, Back DJ, Pirmohamed M. The accumulation and metabolism of zidovudine in 3T3-F442A pre-adipocytes. Br J Pharmacol. 2010;159(2):484–93. https://doi.org/10.1111/j.1476-5381.2009.00552.x.

    Article  CAS  PubMed  Google Scholar 

  96. Dankers AC, Sweep FC, Pertijs JC, Verweij V, van den Heuvel JJ, Koenderink JB, et al. Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res. 2012;349(2):551–63. https://doi.org/10.1007/s00441-012-1417-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. van Dijk A, Naaijkens BA, Jurgens WJ, Oerlemans R, Scheffer GL, Kassies J, et al. The multidrug resistance protein breast cancer resistance protein (BCRP) protects adipose-derived stem cells against ischemic damage. Cell Biol Toxicol. 2012;28(5):303–15. https://doi.org/10.1007/s10565-012-9225-y.

    Article  CAS  PubMed  Google Scholar 

  98. Francisco AF, Lewis MD, Jayawardhana S, Taylor MC, Chatelain E, Kelly JM. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother. 2015;59(8):4653–61. https://doi.org/10.1128/AAC.00520-15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA. Obesity, inflammation, and cancer. Annu Rev Pathol. 2016;11(1):421–49. https://doi.org/10.1146/annurev-pathol-012615-044359.

    Article  CAS  PubMed  Google Scholar 

  100. Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the adipose microenvironment and the obesity–cancer link—a systematic review. Cancer Prev Res (Phila). 2017;10(9):494–506. https://doi.org/10.1158/1940-6207.CAPR-16-0322.

    Article  CAS  Google Scholar 

  101. Hoy AJ, Balaban S, Saunders DN. Adipocyte–tumor cell metabolic crosstalk in breast cancer. Trends Mol Med. 2017;23(5):381–92. https://doi.org/10.1016/j.molmed.2017.02.009.

    Article  CAS  PubMed  Google Scholar 

  102. Duong MN, Cleret A, Matera EL, Chettab K, Mathé D, Valsesia-Wittmann S, et al. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 2015;17(1):57. https://doi.org/10.1186/s13058-015-0569-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Sheng X, Tucci J, Parmentier JH, Ji L, Behan JW, Heisterkamp N, et al. Adipocytes cause leukemia cell resistance to daunorubicin via oxidative stress response. Oncotarget. 2016;7:73147–59. https://doi.org/10.18632/oncotarget.12246.

    PubMed Central  PubMed  Google Scholar 

  104. Sheng X, Parmentier JH, Tucci J, Pei H, Cortez-Toledo O, Dieli-Conwright CM, et al. Adipocytes sequester and metabolize the chemotherapeutic daunorubicin. Mol Cancer Res. 2017;15(12):1704–13. https://doi.org/10.1158/1541-7786.MCR-17-0338.

    Article  CAS  PubMed  Google Scholar 

  105. Cahu X, Calvo J, Poglio S, Prade N, Colsch B, Arcangeli ML, et al. Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv. 2017;1(20):1760–72. https://doi.org/10.1182/bloodadvances.2017004960.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Buck MD, O'Sullivan D, Pearce EL. T cell metabolism drives immunity. J Exp Med. 2015;212(9):1345–60. https://doi.org/10.1084/jem.20151159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Norata GD, Caligiuri G, Chavakis T, Matarese G, Netea MG, Nicoletti A, et al. The cellular and molecular basis of translational immunometabolism. Immunity. 2015;43(3):421–34. https://doi.org/10.1016/j.immuni.2015.08.023.

    Article  CAS  PubMed  Google Scholar 

  108. O'Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol. 2016;16(9):553–65. https://doi.org/10.1038/nri.2016.70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Buck MD, Sowell RT, Kaech SM, Pearce EL. Metabolic instruction of immunity. Cell. 2017;169(4):570–86. https://doi.org/10.1016/j.cell.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  110. Gaber T, Strehl C, Buttgereit F. Metabolic regulation of inflammation. Nat Rev Rheumatol. 2017;13(5):267–79. https://doi.org/10.1038/nrrheum.2017.37.

    Article  PubMed  Google Scholar 

  111. Man K, Kutyavin VI, Chawla A. Tissue immunometabolism: development, physiology, and pathobiology. Cell Metab. 2017;25(1):11–26. https://doi.org/10.1016/j.cmet.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  112. Puleston DJ, Villa M, Pearce EL. Ancillary activity: beyond core metabolism in immune cells. Cell Metab. 2017;26(1):131–41. https://doi.org/10.1016/j.cmet.2017.06.019.

    Article  CAS  PubMed  Google Scholar 

  113. Shehata HM, Murphy AJ, Lee MKS, Gardiner CM, Crowe SM, Sanjabi S, et al. Sugar or fat?—metabolic requirements for immunity to viral infections. Front Immunol. 2017;8:1311. https://doi.org/10.3389/fimmu.2017.01311.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Hegedus A, Kavanagh Williamson M, Huthoff H. HIV-1 pathogenicity and virion production are dependent on the metabolic phenotype of activated CD4+ T cells. Retrovirology. 2014;11(1):98. https://doi.org/10.1186/s12977-014-0098-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Palmer CS, Ostrowski M, Gouillou M, Tsai L, Yu D, Zhou J, et al. Increased glucose metabolic activity is associated with CD4+ T-cell activation and depletion during chronic HIV infection. AIDS. 2014;28(3):297–309. https://doi.org/10.1097/QAD.0000000000000128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1. https://doi.org/10.3389/fimmu.2015.00001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Palmer CS, Cherry CL, Sada-Ovalle I, Singh A, Crowe SM. Glucose metabolism in T cells and monocytes: new perspectives in HIV pathogenesis. EBioMedicine. 2016;6:31–41. https://doi.org/10.1016/j.ebiom.2016.02.012.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Masson JJR, Murphy AJ, Lee MKS, Ostrowski M, Crowe SM, Palmer CS. Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS One. 2017;12(8):e0183931. https://doi.org/10.1371/journal.pone.0183931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, et al. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett. 2017;591(20):3319–32. https://doi.org/10.1002/1873-3468.12843.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Besnard E, Hakre S, Kampmann M, Lim HW, Hosmane NN, Martin A, et al. The mTOR complex controls HIV latency. Cell Host Microbe. 2016;20(6):785–97. https://doi.org/10.1016/j.chom.2016.11.001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Rasheed S, Yan JS, Lau A, Chan AS. HIV replication enhances production of free fatty acids, low density lipoproteins and many key proteins involved in lipid metabolism: a proteomics study. PLoS One. 2008;3(8):e3003. https://doi.org/10.1371/journal.pone.0003003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat Commun. 2016;7:13683. https://doi.org/10.1038/ncomms13683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Simonetta F, Bourgeois C. CD4+FOXP3+ regulatory T-cell subsets in human immunodeficiency virus infection. Front Immunol. 2013;4:215. https://doi.org/10.3389/fimmu.2013.00215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Chachage M, Pollakis G, Kuffour EO, Haase K, Bauer A, Nadai Y, et al. CD25+ FoxP3+ memory CD4 T cells are frequent targets of HIV infection in vivo. J Virol. 2016;90(20):8954–67. https://doi.org/10.1128/JVI.00612-16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 2017;25(6):1282–93.e7. https://doi.org/10.1016/j.cmet.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  126. Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, Zhang W, et al. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight. 2017;2(3):e89160. https://doi.org/10.1172/jci.insight.89160.

    Article  PubMed Central  PubMed  Google Scholar 

  127. Mansfield KG, Carville A, Wachtman L, Goldin BR, Yearley J, Li W, et al. A diet high in saturated fat and cholesterol accelerates simian immunodeficiency virus disease progression. J Infect Dis. 2007;196(8):1202–10. https://doi.org/10.1086/521680.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy E. Lewis.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couturier, J., Lewis, D.E. HIV Persistence in Adipose Tissue Reservoirs. Curr HIV/AIDS Rep 15, 60–71 (2018). https://doi.org/10.1007/s11904-018-0378-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-018-0378-z

Keywords

Navigation