Skip to main content

Advertisement

Log in

The Lymph Node in HIV Pathogenesis

  • HIV Pathogenesis and Treatment (AL Landay and N Utay, Section Editors)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Lymph nodes play a central role in the development of adaptive immunity against pathogens and particularly the generation of antigen-specific B cell responses in specialized areas called germinal centers (GCs). Lymph node (LN) pathology was recognized as an important consequence of human immunodeficiency virus (HIV) infection since the beginning of the HIV epidemic. Investigation into the structural and functional alterations induced by HIV and Simian immunodeficiency virus (SIV) has further cemented the central role that lymphoid tissue plays in HIV/SIV pathogenesis. The coexistence of constant local inflammation, altered tissue architecture, and relative exclusion of virus-specific CD8 T cells from the GCs creates a unique environment for the virus evolution and establishment of viral reservoir in specific GC cells, namely T follicular helper CD4 T cells (Tfh). A better understanding of the biology of immune cells in HIV-infected lymph nodes is a prerequisite to attaining the ultimate goal of complete viral eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. UNAIDS. Global AIDS Update. 2016. http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf.

  2. Perreau M, Levy Y, Pantaleo G. Immune response to HIV. Curr Opin HIV AIDS. 2013;8:333–40.

    CAS  PubMed  Google Scholar 

  3. Schnittman SM, Lane HC, Greenhouse J, et al. Preferential infection of CD4+ memory T cells by human immunodeficiency virus type 1: evidence for a role in the selective T-cell functional defects observed in infected individuals. Proc Natl Acad Sci U S A. 1990;87:6058–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 1993;362:359–62.

  5. Haase AT. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol. 1999;17:625–56.

    Article  CAS  PubMed  Google Scholar 

  6. Haase AT, Henry K, Zupancic M, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996;274:985–9.

    Article  CAS  PubMed  Google Scholar 

  7. Horiike M, Iwami S, Kodama M, et al. Lymph nodes harbor viral reservoirs that cause rebound of plasma viremia in SIV-infected macaques upon cessation of combined antiretroviral therapy. Virology. 2012;423:107–18.

    Article  CAS  PubMed  Google Scholar 

  8. •• Lorenzo-Redondo R, Fryer HR, Bedford T, et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature. 2016;530:51–6. This study demonstartes the persistence of HIV replication at tissue level in cART treated donors and provides a dynamic model for viral evolution and speading between tissues under these conditions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pantaleo G, Graziosi C, Demarest JF, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993;362:355–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rothenberger MK, Keele BF, Wietgrefe SW, et al. Large number of rebounding/founder HIV variants emerge from multifocal infection in lymphatic tissues after treatment interruption. Proc Natl Acad Sci U S A. 2015;112:E1126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crotty S. A brief history of T cell help to B cells. Nat Rev Immunol. 2015;15:185–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lederman MM, Margolis L. The lymph node in HIV pathogenesis. Semin Immunol. 2008;20:187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Willard-Mack CL. Normal structure, function, and histology of lymph nodes. Toxicol Pathol. 2006;34:409–24.

    Article  PubMed  Google Scholar 

  14. Allen CD, Cyster JG. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin Immunol. 2008;20:14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen CD, Okada T, Cyster JG. Germinal-center organization and cellular dynamics. Immunity. 2007;27:190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol. 2014;14:495–504.

    Article  CAS  PubMed  Google Scholar 

  17. Alimzhanov MB, Kuprash DV, Kosco-Vilbois MH, et al. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Proc Natl Acad Sci U S A. 1997;94:9302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Endres R, Alimzhanov MB, Plitz T, et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med. 1999;189:159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Victora GD, Schwickert TA, Fooksman DR, et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell. 2010;143:592–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. •• Shulman Z, Gitlin AD, Targ S, et al. T follicular helper cell dynamics in germinal centers. Science. 2013;341:673–7. This is the first study showing the trafficking of Tfh between GCs within the same LN as a mechnaism for diversification of CD4 follicular help and antigenic variation during the develpoment of antigen-specific B cell responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shulman Z, Gitlin AD, Weinstein JS, et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science. 2014;345:1058–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Metroka CE, Cunningham-Rundles S, Pollack MS, et al. Generalized lymphadenopathy in homosexual men. Ann Intern Med. 1983;99:585–91.

    Article  CAS  PubMed  Google Scholar 

  23. Tindall B, Barker S, Donovan B, et al. Characterization of the acute clinical illness associated with human immunodeficiency virus infection. Arch Intern Med. 1988;148:945–9.

    Article  CAS  PubMed  Google Scholar 

  24. Baroni CD, Uccini S. Lymph nodes in HIV-positive drug abusers with persistent generalized lymphadenopathy: histology, immunohistochemistry, and pathogenetic correlations. Prog AIDS Pathol. 1990;2:33–50.

    CAS  PubMed  Google Scholar 

  25. Estes JD. Pathobiology of HIV/SIV-associated changes in secondary lymphoid tissues. Immunol Rev. 2013;254:65–77.

    Article  PubMed  Google Scholar 

  26. Vago L, Antonacci MC, Cristina S, et al. Morphogenesis, evolution and prognostic significance of lymphatic tissue lesions in HIV infection. Appl Pathol. 1989;7:298–309.

    CAS  PubMed  Google Scholar 

  27. • Heesters BA, Lindqvist M, Vagefi PA, et al. Follicular dendritic cells retain infectious HIV in cycling endosomes. PLoS Pathog. 2015;11:e1005285. This study demonstrates the persistence of infectious HIV in follicular dendritic cell cytosol and suggest a potential treatment for virus eradication.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Miles B, Connick E. TFH in HIV latency and as sources of replication-competent virus. Trends Microbiol. 2016;24:338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bajenoff M, Egen JG, Koo LY, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinkevych M, Cromer D, Tolstrup M, et al. Correction: HIV reactivation from latency after treatment interruption occurs on average every 5-8 days-implications for HIV remission. PLoS Pathog. 2016;12:e1005745.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Perelson AS. Contribution of follicular dendritic cells to persistent HIV viremia. J Virol. 2013;87:7893–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Estes JD, Haase AT, Schacker TW. The role of collagen deposition in depleting CD4+ T cells and limiting reconstitution in HIV-1 and SIV infections through damage to the secondary lymphoid organ niche. Semin Immunol. 2008;20:181–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Estes JD, Wietgrefe S, Schacker T, et al. Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis. 2007;195:551–61.

    Article  CAS  PubMed  Google Scholar 

  34. Hufert FT, van Lunzen J, Janossy G, et al. Germinal centre CD4+ T cells are an important site of HIV replication in vivo. AIDS. 1997;11:849–57.

    Article  CAS  PubMed  Google Scholar 

  35. Schmitz J, van Lunzen J, Tenner-Racz K, et al. Follicular dendritic cells retain HIV-1 particles on their plasma membrane, but are not productively infected in asymptomatic patients with follicular hyperplasia. J Immunol. 1994;153:1352–9.

    CAS  PubMed  Google Scholar 

  36. Estes JD, Reilly C, Trubey CM, et al. Antifibrotic therapy in simian immunodeficiency virus infection preserves CD4+ T-cell populations and improves immune reconstitution with antiretroviral therapy. J Infect Dis. 2015;211:744–54.

    Article  CAS  PubMed  Google Scholar 

  37. Zeng M, Paiardini M, Engram JC, et al. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood. 2012;120:1856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sprent J, Cho JH, Boyman O, Surh CD. T cell homeostasis. Immunol Cell Biol. 2008;86:312–9.

    Article  CAS  PubMed  Google Scholar 

  39. Tan JT, Dudl E, LeRoy E, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A. 2001;98:8732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1 infection: life or death for T cells. Trends Immunol. 2012;33:306–14.

    Article  CAS  PubMed  Google Scholar 

  41. Zeng M, Smith AJ, Wietgrefe SW, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121:998–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Link A, Vogt TK, Favre S, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 2007;8:1255–65.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng M, Southern PJ, Reilly CS, et al. Lymphoid tissue damage in HIV-1 infection depletes naive T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012;8:e1002437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ipp H, Zemlin A. The paradox of the immune response in HIV infection: when inflammation becomes harmful. Clin Chim Acta. 2013;416:96–9.

    Article  CAS  PubMed  Google Scholar 

  45. Muro-Cacho CA, Pantaleo G, Fauci AS. Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden. J Immunol. 1995;154:5555–66.

    CAS  PubMed  Google Scholar 

  46. Presicce P, Shaw JM, Miller CJ, et al. Myeloid dendritic cells isolated from tissues of SIV-infected rhesus macaques promote the induction of regulatory T cells. Aids. 2012;26:263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Florence E, Lundgren J, Dreezen C, et al. Factors associated with a reduced CD4 lymphocyte count response to HAART despite full viral suppression in the EuroSIDA study. HIV Med. 2003;4:255–62.

    Article  CAS  PubMed  Google Scholar 

  48. Robbins GK, Spritzler JG, Chan ES, et al. Incomplete reconstitution of T cell subsets on combination antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. Clin Infect Dis. 2009;48:350–61.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Valdez H. Immune restoration after treatment of HIV-1 infection with highly active antiretroviral therapy (HAART). AIDS Rev. 2002;4:157–64.

    PubMed  Google Scholar 

  50. Schacker TW, Reilly C, Beilman GJ, et al. Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS. 2005;19:2169–71.

    Article  PubMed  Google Scholar 

  51. Smith-Franklin BA, Keele BF, Tew JG, et al. Follicular dendritic cells and the persistence of HIV infectivity: the role of antibodies and Fcgamma receptors. J Immunol. 2002;168:2408–14.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang ZQ, Schuler T, Cavert W, et al. Reversibility of the pathological changes in the follicular dendritic cell network with treatment of HIV-1 infection. Proc Natl Acad Sci U S A. 1999;96:5169–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brenchley JM, Vinton C, Tabb B, et al. Differential infection patterns of CD4+ T cells and lymphoid tissue viral burden distinguish progressive and nonprogressive lentiviral infections. Blood. 2012;120:4172–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Micci L, Alvarez X, Iriele RI, et al. CD4 depletion in SIV-infected macaques results in macrophage and microglia infection with rapid turnover of infected cells. PLoS Pathog. 2014;10:e1004467.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sattentau QJ, Stevenson M. Macrophages and HIV-1: an unhealthy constellation. Cell Host Microbe. 2016;19:304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gray EE, Cyster JG. Lymph node macrophages. J Innate Immun. 2012;4:424–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hasegawa A, Liu H, Ling B, et al. The level of monocyte turnover predicts disease progression in the macaque model of AIDS. Blood. 2009;114:2917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Calantone N, Wu F, Klase Z, et al. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity. 2014;41:493–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. • Baxter AE, Russell RA, Duncan CJ, et al. Macrophage infection via selective capture of HIV-1-infected CD4+ T cells. Cell Host Microbe. 2014;16:711–21. These two papers (ref 58 and 59) show that myeloid cells are capable of engulfing HIV infected CD4 T cells iv vivo providing a base for the establishement of macrophage HIV reservoir and virus disseiminatiuon.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DiNapoli SR, Hirsch VM, Brenchley JM. Macrophages in progressive human immunodeficiency virus/simian immunodeficiency virus infections. J Virol. 2016;90:7596–606.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Carranza P, Del Rio Estrada PM, Diaz Rivera D, et al. Lymph nodes from HIV-infected individuals harbor mature dendritic cells and increased numbers of PD-L1+ conventional dendritic cells. Hum Immunol. 2016;77:584–93.

    Article  CAS  PubMed  Google Scholar 

  62. Ito T, Amakawa R, Kaisho T, et al. Interferon-alpha and interleukin-12 are induced differentially by toll-like receptor 7 ligands in human blood dendritic cell subsets. J Exp Med. 2002;195:1507–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dave B, Kaplan J, Gautam S, Bhargava P. Plasmacytoid dendritic cells in lymph nodes of patients with human immunodeficiency virus. Appl Immunohistochem Mol Morphol. 2012;20:566–72.

    Article  CAS  PubMed  Google Scholar 

  64. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Breitfeld D, Ohl L, Kremmer E, et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192:1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  67. Baumjohann D, Preite S, Reboldi A, et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity. 2013;38:596–605.

    Article  CAS  PubMed  Google Scholar 

  68. Kim CH, Lim HW, Kim JR, et al. Unique gene expression program of human germinal center T helper cells. Blood. 2004;104:1952–60.

    Article  CAS  PubMed  Google Scholar 

  69. Petrovas C, Koup RA. T follicular helper cells and HIV/SIV-specific antibody responses. Curr Opin HIV AIDS. 2014;9:235–41.

    Article  CAS  PubMed  Google Scholar 

  70. Xu Y, Weatherall C, Bailey M, et al. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. J Virol. 2013;87:3760–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lindqvist M, van Lunzen J, Soghoian DZ, et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J Clin Invest. 2012;122:3271–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Perreau M, Savoye AL, De Crignis E, et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J Exp Med. 2013;210:143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petrovas C, Yamamoto T, Gerner MY, et al. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest. 2012;122:3281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu H, Wang X, Malam N, et al. Persistent simian immunodeficiency virus infection drives differentiation, aberrant accumulation, and latent infection of germinal center follicular T helper cells. J Virol. 2016;90:1578–87.

    Article  CAS  PubMed Central  Google Scholar 

  75. Xu H, Wang X, Malam N, et al. Persistent simian immunodeficiency virus infection causes ultimate depletion of follicular Th cells in AIDS. J Immunol. 2015;195:4351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Yamamoto T, Lynch RM, Gautam R, et al. Quality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infection. Sci Transl Med. 2015;7:298ra120. This is the first study showing a correlation between antigen-specific Tfh and breath of neutralizing antibodies in the SHIV model.

    Article  PubMed  Google Scholar 

  77. Cubas RA, Mudd JC, Savoye AL, et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med. 2013;19:494–9.

    Article  CAS  PubMed  Google Scholar 

  78. Onabajo OO, Mattapallil JJ. Expansion or depletion of T follicular helper cells during HIV infection: consequences for B cell responses. Curr HIV Res. 2013;11:595–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chowdhury A, Del Rio Estrada PM, Tharp GK, et al. Decreased T follicular regulatory cell/T follicular helper cell (TFH) in simian immunodeficiency virus-infected rhesus macaques may contribute to accumulation of TFH in chronic infection. J Immunol. 2015;195:3237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miles B, Miller SM, Folkvord JM, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong JJ, Amancha PK, Rogers KA, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Connick E, Folkvord JM, Lind KT, et al. Compartmentalization of simian immunodeficiency virus replication within secondary lymphoid tissues of rhesus macaques is linked to disease stage and inversely related to localization of virus-specific CTL. J Immunol. 2014;193:5613–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. •• Fukazawa Y, Lum R, Okoye AA, et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat Med. 2015;21:132–9. This is the first study showing that in SIV infection B cell follicle areas can function as sanctuaries for virus persistence even in the presence of potent CTL responses in the lymph nodes .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hong JJ, Amancha PK, Rogers K, et al. Spatial alterations between CD4(+) T follicular helper, B, and CD8(+) T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J Immunol. 2012;188:3247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li Q, Skinner PJ, Ha SJ, et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science. 2009;323:1726–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fukazawa Y, Park H, Cameron MJ, et al. Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat Med. 2012;18:1673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mudd PA, Martins MA, Ericsen AJ, et al. Vaccine-induced CD8+ T cells control AIDS virus replication. Nature. 2012;491:129–33.

    Article  CAS  PubMed  Google Scholar 

  88. Chowdhury A, Hayes TL, Bosinger SE, et al. Differential impact of in vivo CD8+ T lymphocyte depletion in controller versus progressor simian immunodeficiency virus-infected macaques. J Virol. 2015;89:8677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sunila I, Vaccarezza M, Pantaleo G, et al. Activated cytotoxic lymphocytes in lymph nodes from human immunodeficiency virus (HIV) 1-infected patients: a light and electronmicroscopic study. Histopathology. 1997;30:31–40.

    Article  CAS  PubMed  Google Scholar 

  90. Cory TJ, Schacker TW, Stevenson M, Fletcher CV. Overcoming pharmacologic sanctuaries. Curr Opin HIV AIDS. 2013;8:190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fletcher CV, Staskus K, Wietgrefe SW, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci U S A. 2014;111:2307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Licht A, Alter G. A drug-free zone—lymph nodes as a safe haven for HIV. Cell Host Microbe. 2016;19:275–6.

    Article  CAS  PubMed  Google Scholar 

  93. Shao J, Kraft JC, Li B, et al. Nanodrug formulations to enhance HIV drug exposure in lymphoid tissues and cells: clinical significance and potential impact on treatment and eradication of HIV/AIDS. Nanomedicine (Lond). 2016;11:545–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantinos Petrovas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on HIV Pathogenesis and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimopoulos, Y., Moysi, E. & Petrovas, C. The Lymph Node in HIV Pathogenesis. Curr HIV/AIDS Rep 14, 133–140 (2017). https://doi.org/10.1007/s11904-017-0359-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-017-0359-7

Keywords

Navigation