Skip to main content

Advertisement

Log in

Use of Human Mucosal Tissue to Study HIV-1 Pathogenesis and Evaluate HIV-1 Prevention Modalities

  • HIV Pathogenesis and Treatment (A Landay, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The use of human mucosal tissue models is an important tool advancing our understanding of the specific mechanisms of sexual HIV transmission. Despite 30 years of study, major gaps remain, including how HIV-1 transverses the epithelium and the identity of the early immune targets (gate keepers). Because defining HIV-1 transmission in vivo is difficult, mucosal tissue is being used ex vivo to identify key steps in HIV-1 entry and early dissemination. Elucidating early events of HIV-1 infection will help us develop more potent and specific HIV-1 preventatives such as microbicides and vaccines. Mucosal tissue has been incorporated into testing regimens for antiretroviral drugs and monoclonal antibodies. The use of mucosal tissue recapitulates the epithelium and immune cells that would be exposed in vivo to virus and drug. This review will discuss the use of mucosal tissue to better understand HIV-1 pathogenesis and prevention modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Li Q, Skinner PJ, Ha SJ, et al. Visualizing antigen-specific and infected cells in situ predicts outcomes in early viral infection. Science. 2009;323(5922):1726–9.

    Article  PubMed  CAS  Google Scholar 

  2. Haase AT. Targeting early infection to prevent HIV-1 mucosal transmission. Nature. 2010;464(7286):217–23.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson DJ, Pudney J, Schust DJ. Caveats associated with the use of human cervical tissue for HIV and microbicide research. AIDS. 2010;24(1):1–4.

    Article  PubMed  Google Scholar 

  4. Hoth DF, Bolognesi DP, Corey L, Vermund SH. NIH conference. HIV vaccine development: a progress report. Ann Intern Med. 1994;121(8):603–11.

    PubMed  CAS  Google Scholar 

  5. Embretson J, Zupancic M, Ribas JL, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature. 1993;362(6418):359–62.

    Article  PubMed  CAS  Google Scholar 

  6. Spira AI, Marx PA, Patterson BK, et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183(1):215–25.

    Article  PubMed  CAS  Google Scholar 

  7. Pope M, Betjes MG, Romani N, et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell. 1994;78(3):389–98.

    Article  PubMed  CAS  Google Scholar 

  8. Pope M, Gezelter S, Gallo N, et al. Low levels of HIV-1 infection in cutaneous dendritic cells promote extensive viral replication upon binding to memory CD4+ T cells. J Exp Med. 1995;182(6):2045–56.

    Article  PubMed  CAS  Google Scholar 

  9. Hladik F, Lentz G, Akridge RE, et al. Dendritic cell-T-cell interactions support coreceptor-independent human immunodeficiency virus type 1 transmission in the human genital tract. J Virol. 1999;73(7):5833–42.

    PubMed  CAS  Google Scholar 

  10. Abuzakouk M, Feighery C, O'Farrelly C. Collagenase and dispase enzymes disrupt lymphocyte surface molecules. J Immunol Methods. 1996;194(2):211–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ford AL, Foulcher E, Goodsall AL, Sedgwick JD. Tissue digestion with dispase substantially reduces lymphocyte and macrophage cell-surface antigen expression. J Immunol Methods. 1996;194(1):71–5.

    Article  PubMed  CAS  Google Scholar 

  12. Collins KB, Patterson BK, Naus GJ, et al. Development of an in vitro organ culture model to study transmission of HIV-1 in the female genital tract. Nat Med. 2000;6(4):475–9.

    Article  PubMed  CAS  Google Scholar 

  13. Greenhead P, Hayes P, Watts PS, et al. Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J Virol. 2000;74(12):5577–86.

    Article  PubMed  CAS  Google Scholar 

  14. Palacio J, Souberbielle BE, Shattock RJ, et al. In vitro HIV1 infection of human cervical tissue. Res Virol. 1994;145(3–4):155–61.

    Article  PubMed  CAS  Google Scholar 

  15. Shen R, Richter HE, Clements RH, et al. Macrophages in vaginal but not intestinal mucosa are monocyte-like and permissive to human immunodeficiency virus type 1 infection. J Virol. 2009;83(7):3258–67.

    Article  PubMed  CAS  Google Scholar 

  16. Gupta P, Collins KB, Ratner D, et al. Memory CD4(+) T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J Virol. 2002;76(19):9868–76.

    Article  PubMed  CAS  Google Scholar 

  17. Hu Q, Frank I, Williams V, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med. 2004;199(8):1065–75.

    Article  PubMed  CAS  Google Scholar 

  18. •• Saba E, Grivel JC, Vanpouille C, et al. HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol. 2010;3(3):280–90. Saba et al. provided an indepth analysis of the cell distribution in cervicovaginal tissue and linking those cells to susceptibility to HIV-1 infection with virus using CCR5 and CXCR4.

    Article  PubMed  CAS  Google Scholar 

  19. Hladik F, Sakchalathorn P, Ballweber L, et al. Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity. 2007;26(2):257–70.

    Article  PubMed  CAS  Google Scholar 

  20. Shen R, Richter HE, Smith PD. Early HIV-1 target cells in human vaginal and ectocervical mucosa. Am J Reprod Immunol. 2011;65(3):261–7.

    Article  PubMed  Google Scholar 

  21. Cummins Jr JE, Guarner J, Flowers L, et al. Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother. 2007;51(5):1770–9.

    Article  PubMed  CAS  Google Scholar 

  22. Ganor Y, Zhou Z, Tudor D, et al. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates. Mucosal Immunol. 2010;3(5):506–22.

    Article  PubMed  CAS  Google Scholar 

  23. Shen R, Drelichman ER, Bimczok D, et al. GP41-specific antibody blocks cell-free HIV type 1 transcytosis through human rectal mucosa and model colonic epithelium. J Immunol. 2010;184(7):3648–55.

    Article  PubMed  CAS  Google Scholar 

  24. Abner SR, Guenthner PC, Guarner J, et al. A human colorectal explant culture to evaluate topical microbicides for the prevention of HIV infection. J Infect Dis. 2005;192(9):1545–56.

    Article  PubMed  CAS  Google Scholar 

  25. Rodriguez MA, Ding M, Ratner D, et al. High replication fitness and transmission efficiency of HIV-1 subtype C from India: implications for subtype C predominance. Virology. 2009;385(2):416–24.

    Article  PubMed  CAS  Google Scholar 

  26. Doehle BP, Hladik F, McNevin JP, et al. Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol. 2009;83(20):10395–405.

    Article  PubMed  CAS  Google Scholar 

  27. •• Ballweber L, Robinson B, Kreger A, et al. Vaginal langerhans cells nonproductively transporting HIV-1 mediate infection of T cells. J Virol. 2011;85(24):13443–7. This paper found that vaginal Langerhans cells in the upper epithelium do not express langerin and are not productively infected, but are able to transmit infectious virus to T cells. Interestingly, langerin plays an important role in transporting HIV-1 to a langerin-dependent degradation pathway. Thus, some vaginal Langerhans cells may not be able to inactivate HIV-1.

    Article  PubMed  CAS  Google Scholar 

  28. Howell AL, Edkins RD, Rier SE, et al. Human immunodeficiency virus type 1 infection of cells and tissues from the upper and lower human female reproductive tract. J Virol. 1997;71(5):3498–506.

    PubMed  CAS  Google Scholar 

  29. Asin SN, Eszterhas SK, Rollenhagen C, et al. HIV type 1 infection in women: increased transcription of HIV type 1 in ectocervical tissue explants. J Infect Dis. 2009;200(6):965–72.

    Article  PubMed  CAS  Google Scholar 

  30. Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 2006;6(11):859–68.

    Article  PubMed  CAS  Google Scholar 

  31. Hladik F, McElrath MJ. Setting the stage: host invasion by HIV. Nat Rev Immunol. 2008;8(6):447–57.

    Article  PubMed  CAS  Google Scholar 

  32. Nishibu A, Ward BR, Jester JV, et al. Behavioral responses of epidermal Langerhans cells in situ to local pathological stimuli. J Investig Dermatol. 2006;126(4):787–96.

    Article  PubMed  CAS  Google Scholar 

  33. Miller CJ, McChesney M, Moore PF. Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of rhesus macaques. Lab Investig. 1992;67(5):628–34.

    PubMed  CAS  Google Scholar 

  34. Morris HH, Gatter KC, Stein H, Mason DY. Langerhans’ cells in human cervical epithelium: an immunohistological study. Br J Obstet Gynaecol. 1983;90(5):400–11.

    Article  PubMed  CAS  Google Scholar 

  35. Edwards JN, Morris HB. Langerhans’ cells and lymphocyte subsets in the female genital tract. Br J Obstet Gynaecol. 1985;92(9):974–82.

    Article  PubMed  CAS  Google Scholar 

  36. Emilson A, Scheynius A. Quantitative and three-dimensional analysis of human Langerhans cells in epidermal sheets and vertical skin sections. J Histochem Cytochem. 1995;43(10):993–8.

    Article  PubMed  CAS  Google Scholar 

  37. Fahrbach KM, Barry SM, Anderson MR, Hope TJ. Enhanced cellular responses and environmental sampling within inner foreskin explants: implications for the foreskin’s role in HIV transmission. Mucosal Immunol. 2010;3(4):410–8.

    Article  PubMed  CAS  Google Scholar 

  38. Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4):361–7.

    Article  PubMed  CAS  Google Scholar 

  39. Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science. 2005;307(5707):254–8.

    Article  PubMed  CAS  Google Scholar 

  40. Kiistala U. Suction blister device for separation of viable epidermis from dermis. J Investig Dermatol. 1968;50(2):129–37.

    PubMed  CAS  Google Scholar 

  41. Peachey RD. Skin temperature and blood flow in relation to the speed of suction blister formation. Br J Dermatol. 1971;84(5):447–52.

    Article  PubMed  CAS  Google Scholar 

  42. Peachey RD. Some factors affecting the speed of suction blister formation in normal subjects. Br J Dermatol. 1971;84(5):435–46.

    Article  PubMed  CAS  Google Scholar 

  43. Patterson GH, Lippincott-Schwartz J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 2002;297(5588):1873–7.

    Article  PubMed  CAS  Google Scholar 

  44. McDonald D, Vodicka MA, Lucero G, et al. Visualization of the intracellular behavior of HIV in living cells. J Cell Biol. 2002;159(3):441–52.

    Article  PubMed  CAS  Google Scholar 

  45. • Blaskewicz CD, Pudney J, Anderson DJ. Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 2011;85(1):97–104. This is the first paper to clearly define the gradation of intercellular junctions in the female genital tract mucosa providing evidence of the porosity of the upper layers of the ectocervical and vaginal epithelium.

    Article  PubMed  CAS  Google Scholar 

  46. Zhou Z, Barry de Longchamps N, Schmitt A, et al. HIV-1 efficient entry in inner foreskin is mediated by elevated CCL5/RANTES that recruits T cells and fuels conjugate formation with Langerhans cells. PLoS Pathog. 2011;7(6):e1002100.

    Article  PubMed  CAS  Google Scholar 

  47. de Witte L, Nabatov A, Pion M, et al. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med. 2007;13(3):367–71.

    Article  PubMed  Google Scholar 

  48. Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1. Nature. 1998;391(6664):240.

    Article  PubMed  CAS  Google Scholar 

  49. • Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med. 2011;9 Suppl 1:S6. This paper speculates why CCR5-using HIV-1 as opposed to CXCR4-using HIV-1 is preferentially transmitted.

    PubMed  Google Scholar 

  50. McClure CP, Tighe PJ, Robins RA, et al. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS. 2005;19(12):1257–65.

    Article  PubMed  CAS  Google Scholar 

  51. Berlier W, Bourlet T, Lawrence P, et al. Selective sequestration of X4 isolates by human genital epithelial cells: implication for virus tropism selection process during sexual transmission of HIV. J Med Virol. 2005;77(4):465–74.

    Article  PubMed  CAS  Google Scholar 

  52. Shen C, Ding M, Ratner D, et al. Evaluation of cervical mucosa in transmission bottleneck during acute HIV-1 infection using a cervical tissue-based organ culture. PLoS One. 2012;7(3):e32539.

    Article  PubMed  CAS  Google Scholar 

  53. Buckheit Jr RW, Buckheit KW. An algorithm for the preclinical development of anti-HIV topical microbicides. Curr HIV Res. 2012;10(1):97–104.

    Article  PubMed  CAS  Google Scholar 

  54. Dezzutti CS, James VN, Ramos A, et al. In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob Agents Chemother. 2004;48(10):3834–44.

    Article  PubMed  CAS  Google Scholar 

  55. Lackman-Smith C, Osterling C, Luckenbaugh K, et al. Development of a comprehensive human immunodeficiency virus type 1 screening algorithm for discovery and preclinical testing of topical microbicides. Antimicrob Agents Chemother. 2008;52(5):1768–81.

    Article  PubMed  CAS  Google Scholar 

  56. Lard-Whiteford SL, Matecka D, O'Rear JJ, et al. Recommendations for the nonclinical development of topical microbicides for prevention of HIV transmission: an update. J Acquir Immune Defic Syndr. 2004;36(1):541–52.

    Article  PubMed  Google Scholar 

  57. Fletcher PS, Elliott J, Grivel JC, et al. Ex vivo culture of human colorectal tissue for the evaluation of candidate microbicides. AIDS. 2006;20(9):1237–45.

    Article  PubMed  Google Scholar 

  58. Grivel JC, Margolis LB. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nat Med. 1999;5(3):344–6.

    Article  PubMed  CAS  Google Scholar 

  59. Fischetti L, Barry SM, Hope TJ, Shattock RJ. HIV-1 infection of human penile explant tissue and protection by candidate microbicides. AIDS. 2009;23(3):319–28.

    Article  PubMed  CAS  Google Scholar 

  60. Richardson-Harman N, Lackman-Smith C, Fletcher PS, et al. Multisite comparison of anti-human immunodeficiency virus microbicide activity in explant assays using a novel endpoint analysis. J Clin Microbiol. 2009;47(11):3530–9.

    Article  PubMed  CAS  Google Scholar 

  61. McElrath MJ, Ballweber L, Terker A, et al. Ex vivo comparison of microbicide efficacies for preventing HIV-1 genomic integration in intraepithelial vaginal cells. Antimicrob Agents Chemother. 2010;54(2):763–72.

    Article  PubMed  CAS  Google Scholar 

  62. Buffa V, Stieh D, Mamhood N, et al. Cyanovirin-N potently inhibits human immunodeficiency virus type 1 infection in cellular and cervical explant models. J Gen Virol. 2009;90(Pt 1):234–43.

    Article  PubMed  CAS  Google Scholar 

  63. Fletcher P, Harman S, Azijn H, et al. Inhibition of human immunodeficiency virus type 1 infection by the candidate microbicide dapivirine, a nonnucleoside reverse transcriptase inhibitor. Antimicrob Agents Chemother. 2009;53(2):487–95.

    Article  PubMed  CAS  Google Scholar 

  64. Fletcher P, Kiselyeva Y, Wallace G, et al. The nonnucleoside reverse transcriptase inhibitor UC-781 inhibits human immunodeficiency virus type 1 infection of human cervical tissue and dissemination by migratory cells. J Virol. 2005;79(17):11179–86.

    Article  PubMed  CAS  Google Scholar 

  65. Fletcher PS, Wallace GS, Mesquita PM, Shattock RJ. Candidate polyanion microbicides inhibit HIV-1 infection and dissemination pathways in human cervical explants. Retrovirology. 2006;3:46.

    Article  PubMed  Google Scholar 

  66. Harman S, Herrera C, Armanasco N, et al. Preclinical evaluation of the HIV-1 fusion inhibitor L’644 as a potential candidate microbicide. Antimicrob Agents Chemother. 2012;56(5):2347–56.

    Article  PubMed  CAS  Google Scholar 

  67. ••Herrera C, Cranage M, McGowan I, et al. Reverse transcriptase inhibitors as potential colorectal microbicides. Antimicrob Agents Chemother. 2009;53(5):1797–807. This paper describes the use of combination antiretroviral compounds showing their benefit compared to single compounds. This provides evidence that lower drug concentrations could be achieved when drugs are used in combination as microbicides for protection against HIV-1.

    Article  PubMed  CAS  Google Scholar 

  68. Herrera C, Cranage M, McGowan I, et al. Colorectal microbicide design: triple combinations of reverse transcriptase inhibitors are optimal against HIV-1 in tissue explants. AIDS. 2011;25(16):1971–9.

    Article  PubMed  CAS  Google Scholar 

  69. Lu H, Zhao Q, Wallace G, et al. Cellulose acetate 1,2-benzenedicarboxylate inhibits infection by cell-free and cell-associated primary HIV-1 isolates. AIDS Res Hum Retrovir. 2006;22(5):411–8.

    Article  PubMed  CAS  Google Scholar 

  70. O'Keefe BR, Vojdani F, Buffa V, et al. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc Natl Acad Sci U S A. 2009;106(15):6099–104.

    Article  PubMed  Google Scholar 

  71. Kawamura T, Cohen SS, Borris DL, et al. Candidate microbicides block HIV-1 infection of human immature Langerhans cells within epithelial tissue explants. J Exp Med. 2000;192(10):1491–500.

    Article  PubMed  CAS  Google Scholar 

  72. Mesquita PM, Wilson SS, Manlow P, et al. Candidate microbicide PPCM blocks human immunodeficiency virus type 1 infection in cell and tissue cultures and prevents genital herpes in a murine model. J Virol. 2008;82(13):6576–84.

    Article  PubMed  CAS  Google Scholar 

  73. • Andrei G, Lisco A, Vanpouille C, et al. Topical tenofovir, a microbicide effective against HIV, inhibits herpes simplex virus-2 replication. Cell Host Microbe. 2011;10(4):379–89. Andrei et al. show tenofovir is effective against not only HIV-1, but also HSV-2 in tissues co-infected with another herpes virus, HHV6. While HHV6 is a benign infection in humans, the infected cells metabolize tenofovir so that it will now block HSV-2 replication. These data support the CAPRISA 004 clinical trial data showing women using topical tenofovir gel were better protected against HSV-2 acquisition than they were against HIV-1 acquisition.

    Article  PubMed  CAS  Google Scholar 

  74. Vanpouille C, Lisco A, Derudas M, et al. A new class of dual-targeted antivirals: monophosphorylated acyclovir prodrug derivatives suppress both human immunodeficiency virus type 1 and herpes simplex virus type 2. J Infect Dis. 2010;201(4):635–43. doi:10.1086/650343.

    Article  PubMed  CAS  Google Scholar 

  75. Mahalingam A, Simmons AP, Ugaonkar SR, et al. Vaginal microbicide gel for delivery of IQP-0528, a pyrimidinedione analog with a dual mechanism of action against HIV-1. Antimicrob Agents Chemother. 2011;55(4):1650–60.

    Article  PubMed  CAS  Google Scholar 

  76. Cost M, Dezzutti CS, Clark MR, et al. Characterization of UC781-tenofovir combination gel products for HIV-1 infection prevention in an ex vivo ectocervical model. Antimicrob Agents Chemother. 2012;56(6):3058–66.

    Article  PubMed  CAS  Google Scholar 

  77. Dezzutti CS, Rohan LC, Wang L, et al. Reformulated tenofovir gel for use as a dual compartment microbicide. J Antimicrob Chemother. 2012;67(9):2139–42.

    Article  PubMed  CAS  Google Scholar 

  78. Dezzutti CS, Shetler C, Mahalingam A, et al. Safety and efficacy of tenofovir/IQP-0528 combination gels—a dual compartment microbicide for HIV-1 prevention. Antivir Res. 2012.

  79. Gupta P, Ratner D, Ding M, et al. Retrocyclin RC-101 blocks HIV-1 transmission across cervical mucosa in an organ culture. J Acquir Immune Defic Syndr. 2012;60(5):455–61.

    Article  PubMed  CAS  Google Scholar 

  80. Rohan LC, Moncla BJ, Kunjara N, Ayudhya RP, et al. In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide. PLoS One. 2010;5(2):e9310.

    Article  PubMed  Google Scholar 

  81. • Wang L, Schnaare RL, Dezzutti C, et al. Rectal microbicides: clinically relevant approach to the design of rectal specific placebo formulations. AIDS Res Ther. 2011;8:12. This is the first publication to deal with rectal-specific topical microbicide products.

    Article  PubMed  Google Scholar 

  82. Cole AL, Herasimtschuk A, Gupta P, et al. The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology. 2007;121(1):140–5.

    Article  PubMed  CAS  Google Scholar 

  83. Akil A, Parniak MA, Dezzuitti CS, et al. Development and characterization of a vaginal film containing dapivirine, a Non- Nucleoside Reverse Transcriptase Inhibitor (NNRTI), for prevention of HIV-1 sexual transmission. Drug Deliv Transl Res. 2011;1(3):209–22.

    Article  PubMed  CAS  Google Scholar 

  84. •• Gunaseelan S, Gallay PA, Bobardt MD, et al. Sustained local delivery of structurally diverse HIV-1 microbicides released from sublimation enthalpy controlled matrices. Pharm Res. 2012;In press. Gunaseelan et al., have applied a new technology to deliver drugs vaginally. This system has the potential to deliver any drug (large protein, peptide, hydrophobic or hydrophilic small molecules) thus defining itself as a universal delivery dosage form, This would be incorporated into an intravaginal ring for delivery of drug up to and beyond 30 days.

  85. Anton PA, Cranston RD, Kashuba A, et al. RMP-02/MTN-006: a phase 1 rectal safety, acceptability, pharmacokinetic and pharmacodynamic study of tenofovir 1 % gel compared to oral tenofovir disoproxil fumerate. AIDS Res Hum Retrovir. 2012;In press.

  86. McGowan I, Hoesley C, Andrew P, et al., editors. MTN-007: a phase 1 randomized, double-blind, placebo-controlled rectal safety and acceptability study of tenofovir 1 % gel. Presented at the Conference on Retroviruses and Opportunistic Infections 2012 March 5–8; Seattle, WA.

  87. Patel S, Hazrati E, Cheshenko N, et al. Seminal plasma reduces the effectiveness of topical polyanionic microbicides. J Infect Dis. 2007;196(9):1394–402.

    Article  PubMed  CAS  Google Scholar 

  88. Price CF, Tyssen D, Sonza S, et al. SPL7013 Gel (VivaGel(R)) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLoS One. 2011;6(9):e24095.

    Article  PubMed  CAS  Google Scholar 

  89. Neurath AR, Strick N, Li YY. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides. BMC Infect Dis. 2006;6:150.

    Article  PubMed  Google Scholar 

  90. Munch J, Rucker E, Standker L, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007;131(6):1059–71.

    Article  PubMed  Google Scholar 

  91. Skoler-Karpoff S, Ramjee G, Ahmed K, et al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9654):1977–87.

    Article  PubMed  CAS  Google Scholar 

  92. Van Damme L, Ramjee G, Alary M, et al. Effectiveness of COL-1492, a nonoxynol-9 vaginal gel, on HIV-1 transmission in female sex workers: a randomised controlled trial. Lancet. 2002;360(9338):971–7.

    Article  PubMed  Google Scholar 

  93. Van Damme L, Govinden R, Mirembe FM, et al. Lack of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N Engl J Med. 2008;359(5):463–72.

    Article  PubMed  Google Scholar 

  94. Beer BE, Doncel GF, Krebs FC, et al. In vitro preclinical testing of nonoxynol-9 as potential anti-human immunodeficiency virus microbicide: a retrospective analysis of results from five laboratories. Antimicrob Agents Chemother. 2006;50(2):713–23.

    Article  PubMed  CAS  Google Scholar 

  95. •• Anton PA, Saunders T, Elliott J, et al. First phase 1 double-blind, placebo-controlled, randomized rectal microbicide trial using UC781 gel with a novel index of ex vivo efficacy. PLoS One. 2011;6(9):e23243. This is the first use of the “ex vivo challenge assay” to correlate mucosal drug levels to drug activity. Colonic biopsies were protected from infection with HIV-1 after dosing with UC781 gel rectally for up to 7 days.

    Article  PubMed  CAS  Google Scholar 

  96. Dezzutti CS, Uranker K, Bunge K, et al., editors. Ex vivo challenge of female genital tract tissue: a surrogate for microbicide efficacy. Presented at Microbicides 2012; Sydney Australia.

  97. Microbicides Trial Network M. Phase 1 safety and pharmacokinetics of dapivirine/maraviroc intravaginal ring accessed October 4 2012. http://www.mtnstopshiv.org/studies/2241.

Download references

Acknowledgement

The authors appreciate the support of the National Institute of Allergy and Infectious Diseases, Division of AIDS (UM1 AI068633).

Disclosure

No conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlene S. Dezzutti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dezzutti, C.S., Hladik, F. Use of Human Mucosal Tissue to Study HIV-1 Pathogenesis and Evaluate HIV-1 Prevention Modalities. Curr HIV/AIDS Rep 10, 12–20 (2013). https://doi.org/10.1007/s11904-012-0148-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-012-0148-2

Keywords

Navigation