Skip to main content

Advertisement

Log in

Osteoporosis and Bone Health in HIV

  • Metabolic Complications and Comorbidity (JM Kilby, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Patients with HIV can develop several complications that involve bone including low bone mineral density and osteoporosis, osteonecrosis, and rarely osteomalacia. Low bone mineral density leading to osteoporosis is the most common bone pathology. This may result from HIV infection (directly or indirectly), antiretroviral toxicity, or as a consequence of other co-morbidities. The clinical relevance of osteoporosis in HIV infection has been uncertain; however, fragility fractures are increasingly reported in HIV-infected patients. Further research is required to understand the pathogenesis of osteoporosis in HIV-infected patients and determine effective management; however, initiation of antiretroviral therapy seems to accelerate (in the short-term) bone demineralization. Tenofovir may be associated with a greater degree of short-term loss of bone density than other antiviral agents and the potential long-term bone dysfunction is unclear. As the HIV-infected population ages, screening for low bone mineral density will become increasingly important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Palella Jr FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338:853–60.

    Article  PubMed  Google Scholar 

  2. Neuhaus J, Angus B, Kowalska JD, et al. Risk of all-cause mortality associated with nonfatal AIDS and serious non-AIDS events among adults infected with HIV. AIDS. 2010;24:697–706.

    Article  PubMed  Google Scholar 

  3. Cotter AG, Powderly WG. Endocrine complications of human immunodeficiency virus infection: hypogonadism, bone disease and tenofovir-related toxicity. Best Pract Res Clin Endocrinol Metab. 2011;25:501–15.

    Article  PubMed  CAS  Google Scholar 

  4. Kanis JA, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–41.

    Article  PubMed  CAS  Google Scholar 

  5. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354:2250–61.

    Article  PubMed  CAS  Google Scholar 

  6. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289:1501–4.

    Article  PubMed  CAS  Google Scholar 

  7. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kanis JA, Johnell O, De Laet C, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35:375–82.

    Article  PubMed  CAS  Google Scholar 

  9. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353:878–82.

    Article  PubMed  CAS  Google Scholar 

  10. Mondy K, Yarasheski K, Powderly WG, et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin Infect Dis. 2003;36:482–90.

    Article  PubMed  Google Scholar 

  11. Amiel C, Ostertag A, Slama L, et al. BMD is reduced in HIV-infected men irrespective of treatment. J Bone Miner Res. 2004;19:402–9.

    Article  PubMed  CAS  Google Scholar 

  12. Carr A, Miller J, Eisman JA, Cooper DA. Osteopenia in HIV-infected men: association with asymptomatic lactic acidemia and lower weight pre-antiretroviral therapy. AIDS. 2001;15:703–9.

    Article  PubMed  CAS  Google Scholar 

  13. Jones S, Restrepo D, Kasowitz A, et al. Risk factors for decreased bone density and effects of HIV on bone in the elderly. Osteoporos Int. 2008;19:913–8.

    Article  PubMed  CAS  Google Scholar 

  14. Yin M, Dobkin J, Brudney K, et al. Bone mass and mineral metabolism in HIV+ postmenopausal women. Osteoporos Int. 2005;16:1345–52.

    Article  PubMed  Google Scholar 

  15. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS. 2007;21:617–23.

    Article  PubMed  Google Scholar 

  16. Cazanave C, Dupon M, Lavignolle-Aurillac V, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS. 2008;22:395–402.

    Article  PubMed  Google Scholar 

  17. • Yin MT, Zhang CA, McMahon DJ, et al. Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab. 2012;97:554–62. Further recent evidence of the additional risk associated with HIV, even in populations already at high risk of osteoporosis.

    Article  PubMed  CAS  Google Scholar 

  18. Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS. 2003;17:1917–23.

    Article  PubMed  Google Scholar 

  19. Mallon PW. HIV and bone mineral density. Curr Opin Infect Dis. 2010;23:1–8.

    Article  PubMed  Google Scholar 

  20. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20:2165–74.

    Article  PubMed  Google Scholar 

  21. Bolland MJ, Grey AB, Gamble GD, Reid IR. Low body weight mediates the relationship between HIV infection and low bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2007;92:4522–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cazanave C, Dupon M, Lavignolle-Aurillac V, Barthe N, Lawson-Ayayi S, Mehsen N, et al. Reduced bone mineral density in HIV-infected patients: prevalence and associated factors. AIDS. 2008;22:395–402.

    Article  PubMed  Google Scholar 

  23. Fausto A, Bongiovanni M, Cicconi P, et al. Potential predictive factors of osteoporosis in HIV-positive subjects. Bone. 2006;38:893–7.

    Article  PubMed  Google Scholar 

  24. van Vonderen MG, Lips P, van Agtmael MA, Hassink EA, Brinkman K, Geerlings SE, et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared to nevirapine/lopinavir/ritonavir. AIDS. 2009;23:1367–76.

    Article  PubMed  Google Scholar 

  25. Gallant JE, DeJesus E, Arribas JR, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med. 2006;354:251–60.

    Article  PubMed  CAS  Google Scholar 

  26. Stellbrink HJ, Orkin C, Arribas JR, et al. Comparison of changes in bone density and turnover with abacavir-lamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis. 2010;51:963–72.

    Article  PubMed  Google Scholar 

  27. • McComsey G, Kitch D, Daar E, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis. 2011;203:1791–801. Evidence from a randomized controlled trial that tenofovir is associated with increased rates of decreased bone density immediately after initiation of ART.

    Article  PubMed  CAS  Google Scholar 

  28. Martin A, Bloch M, Amin J, et al. Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-Lamivudine: a randomized, 96-week trial. Clin Infect Dis. 2009;49:1591–601.

    Article  PubMed  CAS  Google Scholar 

  29. Bolland MJ, Wang TK, Grey A, Gamble GD, Reid IR. Stable bone density in HAART-treated individuals with HIV: a meta-analysis. J Clin Endocrinol Metab. 2011;96:2721–31.

    Article  PubMed  CAS  Google Scholar 

  30. Grund B, Peng G, Gibert CL, et al. Continuous antiretroviral therapy decreases bone mineral density. AIDS. 2009;23:1519–29.

    Article  PubMed  CAS  Google Scholar 

  31. Liu AY, Vittinghoff E, Sellmeyer DE, et al. Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS One. 2011;6:e23688.

    Article  PubMed  CAS  Google Scholar 

  32. Rosenvinge MM, Gedela K, Copas AJ, et al. Tenofovir-linked hyperparathyroidism is independently associated with the presence of vitamin D deficiency. J Acquir Immune Defic Syndr. 2010;54:496–9.

    Article  PubMed  CAS  Google Scholar 

  33. Triant VA, Brown TT, Lee H, Grinspoon SK. Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab. 2008;93:3499–504.

    Article  PubMed  CAS  Google Scholar 

  34. Collin F, Duval X, Le Moing V, et al. Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. AIDS. 2009;23:1021–4.

    Article  PubMed  Google Scholar 

  35. Womack JA, Goulet JL, Gibert C, et al. Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One. 2011;6:e17217.

    Article  PubMed  CAS  Google Scholar 

  36. Yin MT, Shi Q, Hoover DR, et al. Fracture incidence in HIV-infected women: results from the Women’s Interagency HIV Study. AIDS. 2010;24:2679–86.

    Article  PubMed  Google Scholar 

  37. Hansen AB, Gerstoft J, Kronborg G, et al. Incidence of low and high-energy fractures in persons with and without HIV infection: a Danish population-based cohort study. AIDS. 2012;26:285–93.

    Article  PubMed  Google Scholar 

  38. • Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P. Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral gents. AIDS. 2012;26:825–31. First study to date to potentially link tenofovir use to increased risk of fracture.

    Article  PubMed  CAS  Google Scholar 

  39. Young B, Dao CN, Buchacz K, et al. Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000–2006. Clin Infect Dis. 2011;52:1061–8.

    Article  PubMed  Google Scholar 

  40. Rodriguez M, Daniels B, Gunawardene S, Robbins GK. High frequency of vitamin D deficiency in ambulatory HIV-Positive patients. AIDS Res Hum Retroviruses. 2009;25:9–14.

    Article  PubMed  CAS  Google Scholar 

  41. Van Den Bout-Van Den Beukel CJ, Fievez L, Michels M, et al. Vitamin D deficiency among HIV type 1-infected individuals in the Netherlands: effects of antiretroviral therapy. AIDS Res Hum Retroviruses. 2008;24:1375–82.

    Article  Google Scholar 

  42. Lundgren JD, Battegay M, Behrens G, et al. European AIDS Clinical Society (EACS) guidelines on the prevention and management of metabolic diseases in HIV. HIV Med. 2008;9:72–81.

    Article  PubMed  CAS  Google Scholar 

  43. • McComsey GA, Tebas P, Shane E, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis. 2010;51:937–46. State-of-the-art guidelines for screening and management of osteoporosis in HIV infection.

    Article  PubMed  Google Scholar 

  44. Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc. 2002;77:453–68.

    PubMed  Google Scholar 

  45. Guaraldi G, Orlando G, Madeddu G, et al. Alendronate reduces bone resorption in HIV-associated osteopenia/osteoporosis. HIV Clin Trials. 2004;5:269–77.

    Article  PubMed  CAS  Google Scholar 

  46. Mondy K, Powderly WG, Claxton SA, et al. Alendronate, vitamin D, and calcium for the treatment of osteopenia/osteoporosis associated with HIV infection. J Acquir Immune Defic Syndr. 2005;38:426–31.

    Article  PubMed  CAS  Google Scholar 

  47. McComsey GA, Kendall MA, Tebas P, et al. Alendronate with calcium and vitamin D supplementation is safe and effective for the treatment of decreased bone mineral density in HIV. AIDS. 2007;21:2473–82.

    Article  PubMed  CAS  Google Scholar 

  48. Bolland MJ, Grey AB, Horne AM, et al. Annual zoledronate increases bone density in highly active antiretroviral therapy-treated human immunodeficiency virus-infected men: a randomized controlled trial. J Clin Endocrinol Metab. 2007;92:1283–8.

    Article  PubMed  CAS  Google Scholar 

  49. Huang J, Meixner L, Fernandez S, McCutchan JA. A double-blinded, randomized controlled trial of zoledronate therapy for HIV-associated osteopenia and osteoporosis. AIDS. 2009;23:51–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

W. G. Powderly: consultant to Gilead, Tibotec, and Bristol-Myers-Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Powderly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powderly, W.G. Osteoporosis and Bone Health in HIV. Curr HIV/AIDS Rep 9, 218–222 (2012). https://doi.org/10.1007/s11904-012-0119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-012-0119-7

Keywords

Navigation