Skip to main content

Advertisement

Log in

Role of collagen deposition in lymphatic tissues and immune reconstruction during HIV-1 and SIV infections

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

The hallmark of HIV-1/simian immunodeficiency virus infections is the progressive depletion of CD4+ T cells that ultimately renders the host incapable of defending against AIDS-defining opportunistic infections and malignancies. Although many potential mechanisms have been proposed to explain CD4+ T-cell loss, this review focuses on the growing evidence that collagen deposition and consequent fibrotic damage to the lymphatic tissue T-cell compartment contributes to CD4+ T-cell decline and limits CD4+ T-cell repopulation, even with highly active antiretroviral therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Joint United Nations Programme on HIV/AIDS (UNAIDS): 2006 Report on the Global AIDS Epidemic 2006. Geneva: UNAIDS; 2006.

    Google Scholar 

  2. Burgoyne RW, Tan DH: Prolongation and quality of life for HIV-infected adults treated with highly active antiretroviral therapy (HAART): a balancing act. J Antimicrob Chemother 2008, 61:469–473.

    Article  PubMed  CAS  Google Scholar 

  3. Martin JC, Soriano V, Jimenez-Nacher I, et al.: Overall trends in CD4 counts and plasma viremia in an urban clinic since the introduction of highly active antiretroviral therapies. Clin Microbiol Infect 2001, 7:678–681.

    Article  PubMed  CAS  Google Scholar 

  4. Gea-Banacloche JC, Clifford Lane H: Immune reconstitution in HIV infection. AIDS 1999, 13(Suppl A):25–38.

    Google Scholar 

  5. Baker JV, Peng G, Rapkin J, et al.: Poor initial CD4+ recovery with antiretroviral therapy prolongs immune depletion and increases risk for AIDS and non-AIDS diseases. J Acquir Immune Defic Syndr 2008, 48:541–546.

    Article  PubMed  CAS  Google Scholar 

  6. Barbaro G, Barbarini G: HIV infection and cancer in the era of highly active antiretroviral therapy. Oncol Rep 2007, 17:1121–1126.

    PubMed  Google Scholar 

  7. Engels EA, Biggar RJ, Hall HI, et al.: Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 2008, 123:187–194.

    Article  PubMed  CAS  Google Scholar 

  8. Engels EA, Pfeiffer RM, Goedert JJ, et al.: Trends in cancer risk among people with AIDS in the United States 1980–2002. AIDS 2006, 20:1645–1654.

    Article  PubMed  Google Scholar 

  9. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM: Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 2007, 370:59–67.

    Article  PubMed  Google Scholar 

  10. Lewden C, Salmon D, Morlat P, et al.: Causes of death among human immunodeficiency virus (HIV)-infected adults in the era of potent antiretroviral therapy: emerging role of hepatitis and cancers, persistent role of AIDS. Int J Epidemiol 2005, 34:121–130.

    Article  PubMed  Google Scholar 

  11. Palefsky JM, Holly EA, Efirdc JT, et al.: Anal intraepithelial neoplasia in the highly active antiretroviral therapy era among HIV-positive men who have sex with men. AIDS 2005, 19:1407–1414.

    Article  PubMed  Google Scholar 

  12. O’Brien WA, Hartigan PM, Martin D, et al.: Changes in plasma HIV-1 RNA and CD4+ lymphocyte counts and the risk of progression to AIDS. Veterans Affairs Cooperative Study Group on AIDS. N Engl J Med 1996, 334:426–431.

    Article  PubMed  CAS  Google Scholar 

  13. Egger M, May M, Chene G, et al.: Prognosis of HIV-1-infected patients starting highly active antiretroviral therapy: a collaborative analysis of prospective studies. Lancet 2002, 360:119–129.

    Article  PubMed  Google Scholar 

  14. Carpenter CC, Fischl MA, Hammer SM, et al.: Antiretroviral therapy for HIV infection in 1998: updated recommendations of the International AIDS Society-USA Panel. JAMA 1998, 280:78–86.

    Article  PubMed  CAS  Google Scholar 

  15. Dybul M, Fauci AS, Bartlett JG, et al.: Guidelines for using antiretroviral agents among HIV-infected adults and adolescents. Ann Intern Med 2002, 137:381–433.

    PubMed  Google Scholar 

  16. Yeni PG, Hammer SM, Carpenter CC, et al.: Antiretroviral treatment for adult HIV infection in 2002: updated recommendations of the International AIDS Society-USA Panel. JAMA 2002, 288:222–235.

    Article  PubMed  CAS  Google Scholar 

  17. Bailey AC, Fisher M: Current use of antiretroviral treatment. Br Med Bull 2008, 87:175–192.

    Article  PubMed  CAS  Google Scholar 

  18. Vrisekoop N, van Gent R, de Boer AB, et al.: Restoration of the CD4 T cell compartment after long-term highly active antiretroviral therapy without phenotypical signs of accelerated immunological aging. J Immunol 2008, 181:1573–1581.

    PubMed  CAS  Google Scholar 

  19. Hein WR: Organization of mucosal lymphoid tissue. Curr Top Microbiol Immunol 1999, 236:1–15.

    PubMed  CAS  Google Scholar 

  20. Westermann J, Pabst R: Lymphocyte subsets in the blood: a diagnostic window on the lymphoid system? Immunol Today 1990, 11:406–410.

    Article  PubMed  CAS  Google Scholar 

  21. Brenchley JM, Price DA, Douek DC: HIV disease: fallout from a mucosal catastrophe? Nat Immunol 2006, 7:235–239.

    Article  PubMed  CAS  Google Scholar 

  22. Brenchley JM, Schacker TW, Ruff LE, et al.: CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med 2004, 200:749–759.

    Article  PubMed  CAS  Google Scholar 

  23. Clayton F, Snow G, Reka S, Kotler DP: Selective depletion of rectal lamina propria rather than lymphoid aggregate CD4 lymphocytes in HIV infection. Clin Exp Immunol 1997, 107:288–292.

    Article  PubMed  CAS  Google Scholar 

  24. Guadalupe M, Reay E, Sankaran S, et al.: Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol 2003, 77:11708–11717.

    Article  PubMed  CAS  Google Scholar 

  25. Li Q, Duan L, Estes JD, et al.: Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 2005, 434:1148–1152.

    PubMed  CAS  Google Scholar 

  26. Mattapallil JJ, Douek DC, Hill B, et al.: Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005, 434:1093–1097.

    Article  PubMed  CAS  Google Scholar 

  27. Vajdy M, Veazey R, Tham I, et al.: Early immunologic events in mucosal and systemic lymphoid tissues after intrarectal inoculation with simian immunodeficiency virus. J Infect Dis 2001, 184:1007–1014.

    Article  PubMed  CAS  Google Scholar 

  28. Mehandru S, Poles MA, Tenner-Racz K, et al.: Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS Med 2006, 3:e484.

    Article  PubMed  Google Scholar 

  29. Chun TW, Nickle DC, Justement JS, et al.: Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 2008, 197:714–720.

    Article  PubMed  CAS  Google Scholar 

  30. Guadalupe M, Sankaran S, George MD, et al.: Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J Virol 2006, 80:8236–8247.

    Article  PubMed  CAS  Google Scholar 

  31. Estes J, Baker JV, Brenchley JM, et al.: Collagen deposition limits immune reconstitution in the gut. J Infect Dis 2008, 198:456–464.

    Article  PubMed  Google Scholar 

  32. George MD, Reay E, Sankaran S, Dandekar S: Early antiretroviral therapy for simian immunodeficiency virus infection leads to mucosal CD4+ T-cell restoration and enhanced gene expression regulating mucosal repair and regeneration. J Virol 2005, 79:2709–2719.

    Article  PubMed  CAS  Google Scholar 

  33. Verhoeven D, Sankaran S, Silvey M, Dandekar S: Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008, 82:4016–4027.

    Article  PubMed  CAS  Google Scholar 

  34. O’Murchadha MT, Wolf BC, Neiman RS: The histologic features of hyperplastic lymphadenopathy in AIDS-related complex are nonspecific. Am J Surg Pathol 1987, 11:94–99.

    Article  PubMed  CAS  Google Scholar 

  35. Estes JD, Wietgrefe S, Schacker T, et al.: Simian immunodeficiency virus-induced lymphatic tissue fibrosis is mediated by transforming growth factor beta 1-positive regulatory T cells and begins in early infection. J Infect Dis 2007, 195:551–561.

    Article  PubMed  CAS  Google Scholar 

  36. Schacker TW, Brenchley JM, Beilman GJ, et al.: Lymphatic tissue fibrosis is associated with reduced numbers of naive CD4+ T cells in human immunodeficiency virus type 1 infection. Clin Vaccine Immunol 2006, 13:556–560.

    Article  PubMed  CAS  Google Scholar 

  37. Schacker TW, Nguyen PL, Beilman GJ, et al.: Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J Clin Invest 2002, 110:1133–1139.

    PubMed  CAS  Google Scholar 

  38. Schacker TW, Reilly C, Beilman GJ, et al.: Amount of lymphatic tissue fibrosis in HIV infection predicts magnitude of HAART-associated change in peripheral CD4 cell count. AIDS 2005, 19:2169–2171.

    Article  PubMed  Google Scholar 

  39. Tsakraklides V, Tsakraklides E, Good RA: An autopsy study of human axillary lymph node histology. Am J Pathol 1975, 78:7–22.

    PubMed  CAS  Google Scholar 

  40. Taniguchi I, Murakami G, Sato A, et al.: Lymph node hyalinization in elderly Japanese. Histol Histopathol 2003, 18:1169–1180.

    PubMed  CAS  Google Scholar 

  41. Pahlavani MA, Richardson A, Cheung HT: Age-dependent changes of the mesenteric lymph node of Fischer F344 rats: morphological and histometric analysis. Mech Ageing Dev 1987, 39:137–146.

    Article  PubMed  CAS  Google Scholar 

  42. Cavert W, Notermans DW, Staskus K, et al.: Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV-1 infection. Science 1997, 276:960–964.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang ZQ, Notermans DW, Sedgewick G, et al.: Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc Natl Acad Sci U S A 1998, 95:1154–1159.

    Article  PubMed  CAS  Google Scholar 

  44. Border WA, Noble NA: Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994, 331:1286–1292.

    Article  PubMed  CAS  Google Scholar 

  45. Border WA, Ruoslahti E: Transforming growth factor-beta in disease: the dark side of tissue repair. J Clin Invest 1992, 90:1–7.

    Article  PubMed  CAS  Google Scholar 

  46. Mauviel A: Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med 2005, 117:69–80.

    PubMed  CAS  Google Scholar 

  47. Verrecchia F, Mauviel A: Transforming growth factor-beta and fibrosis. World J Gastroenterol 2007, 13:3056–3062.

    PubMed  CAS  Google Scholar 

  48. Estes JD, Li Q, Reynolds MR, et al.: Premature induction of an immunosuppressive regulatory T cell response during acute simian immunodeficiency virus infection. J Infect Dis 2006, 193:703–712.

    Article  PubMed  CAS  Google Scholar 

  49. Azuma A, Nukiwa T, Tsuboi E, et al.: Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005, 171:1040–1047.

    Article  PubMed  Google Scholar 

  50. Nagai S, Hamada K, Shigematsu M, et al.: Open-label compassionate use one year-treatment with pirfenidone to patients with chronic pulmonary fibrosis. Intern Med 2002, 41:1118–1123.

    Article  PubMed  CAS  Google Scholar 

  51. Nicod LP: Pirfenidone in idiopathic pulmonary fibrosis. Lancet 1999, 354:268–269.

    Article  PubMed  CAS  Google Scholar 

  52. Raghu G, Johnson WC, Lockhart D, Mageto Y: Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label phase II study. Am J Respir Crit Care Med 1999, 159:1061–1069.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob D. Estes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estes, J.D. Role of collagen deposition in lymphatic tissues and immune reconstruction during HIV-1 and SIV infections. Curr HIV/AIDS Rep 6, 29–35 (2009). https://doi.org/10.1007/s11904-009-0005-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-009-0005-0

Keywords

Navigation