Skip to main content

Advertisement

Log in

New players in cytokine control of HIV infection

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Cytokines are involved early in the pathogenesis of HIV infection and disease progression as a component of immunologic dysregulation and immunodeficiency and as determinants controlling virus replication. Several steps, before and after retroviral integration into host DNA in T cells and macrophages, are affected by cytokines whereas CCR5 and CXCR4 binding chemokines can interfere with viral entry. A growing number of potential players—including the γ-common interleukin (IL)-7, IL-15, and IL-21 together with IL-17, IL-18, IL-19, IL-20, IL-23, and IL-27—are discussed in terms of their perturbation in HIV infection and of their effects on virus replication. Thus, an increasing intersection of HIV infection and the cytokine network represents a crucial determinant of virus replication and immunologic dysregulation and will likely play a key role in the development of effective strategies of HIV prevention and immunologic reconstitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Alfano M, Poli G: Role of cytokines and chemokines in the regulation of innate immunity and HIV infection. Mol Immunol 2005, 42:161–82.

    Article  PubMed  CAS  Google Scholar 

  2. Meanwell NA, Kadow JF: Maraviroc, a chemokine CCR5 receptor antagonist for the treatment of HIV infection and AIDS. Curr Opin Investig Drugs 2007, 8:669–681.

    PubMed  CAS  Google Scholar 

  3. Selliah N, Zhang M, DeSimone D, et al.: The gammacytokine regulated transcription factor, STAT5, increases HIV-1 production in primary CD4 T cells. Virology 2006, 344:283–291.

    Article  PubMed  CAS  Google Scholar 

  4. Crotti A, Lusic M, Lupo R, et al.: Naturally occurring C-terminally truncated STAT5 is a negative regulator of human immunodeficiency virus-type 1 expression. Blood 2007, 109:5380–5389.

    Article  PubMed  CAS  Google Scholar 

  5. Schmitt N, Nugeyre MT, Scott-Algara D, et al.: Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection. AIDS 2006, 20:533–542.

    Article  PubMed  Google Scholar 

  6. Managlia EZ, Landay A, Al-Harthi L: Interleukin-7 induces HIV replication in primary naive T cells through a nuclear factor of activated T cell (NFAT)-dependent pathway. Virology 2006, 350:443–452.

    Article  PubMed  CAS  Google Scholar 

  7. Wang FX, Xu Y, Sullivan J, et al.: IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest 2005, 115:128–137.

    Article  PubMed  CAS  Google Scholar 

  8. Vassena L, Proschan M, Fauci AS, Lusso P: Interleukin 7 reduces the levels of spontaneous apoptosis in CD4+ and CD8+ T cells from HIV-1-infected individuals. Proc Natl Acad Sci U S A 2007, 104:2355–2360.

    Article  PubMed  CAS  Google Scholar 

  9. Audige A, Schlaepfer E, Joller H, Speck RF: Uncoupled anti-HIV and immune-enhancing effects when combining IFN-alpha and IL-7. J Immunol 2005, 175:3724–3736.

    PubMed  CAS  Google Scholar 

  10. Song H, Nakayama EE, Shioda T: Effects of human interleukin 7 on HIV-1 replication in monocyte-derived human macrophages. AIDS 2006, 20:937–939.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang M, Drenkow J, Lankford CS, et al.: HIV regulation of the IL-7R: a viral mechanism for enhancing HIV-1 replication in human macrophages in vitro. J Leukoc Biol 2006, 79:1328–1338.

    Article  PubMed  CAS  Google Scholar 

  12. Lum JJ, Schnepple DJ, Nie Z, et al.: Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity. J Virol 2004, 78:6033–6042.

    Article  PubMed  CAS  Google Scholar 

  13. Kopka J, Mecikovsky D, Aulicino PC, et al.: High IL-7 plasma levels may induce and predict the emergence of HIV-1 virulent strains in pediatric infection. J Clin Virol 2005, 33:237–242.

    PubMed  CAS  Google Scholar 

  14. Lin YL, Portales P, Segondy M, et al.: CXCR4 overexpression during the course of HIV-1 infection correlates with the emergence of X4 strains. J Acquir Immune Defic Syndr 2005, 39:530–536.

    PubMed  CAS  Google Scholar 

  15. Rodriguez AR, Arulanandam BP, Hodara VL, et al.: Influence of interleukin-15 on CD8+ natural killer cells in human immunodeficiency virus type 1-infected chimpanzees. J Gen Virol 2007, 88:641–651.

    Article  PubMed  CAS  Google Scholar 

  16. Bolesta E, Kowalczyk A, Wierzbicki A, et al.: Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery. J Immunol 2006, 177:177–191.

    PubMed  CAS  Google Scholar 

  17. Zeng R, Spolski R, Finkelstein SE, et al.: Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005; 201:139–48.

    Article  PubMed  CAS  Google Scholar 

  18. White L, Krishnan S, Strbo N, et al.: Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV). Blood 2007, 109:3873–3880.

    Article  PubMed  CAS  Google Scholar 

  19. Mueller YM, Petrovas C, Bojczuk PM, et al.: Interleukin-15 increases effector memory CD8+ T cells and NK cells in simian immunodeficiency virus-infected macaques. J Virol 2005, 79:4877–4885.

    Article  PubMed  CAS  Google Scholar 

  20. Chong SY, Egan MA, Kutzler MA, et al.: Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques. Vaccine 2007, 25:4967–4982.

    Article  PubMed  CAS  Google Scholar 

  21. Hryniewicz A, Price DA, Moniuszko M, et al.: Interleukin-15 but not interleukin-7 abrogates vaccine-induced decrease in virus level in simian immunodeficiency virus mac251-infected macaques. J Immunol 2007, 178:3492–3504.

    PubMed  CAS  Google Scholar 

  22. Forcina G, d’Ettorre G, Mastroianni CM, et al.: Interleukin-15 modulates interferon-gamma and beta-chemokine production in patients with HIV infection: implications for immune-based therapy. Cytokine 2004, 25:283–290.

    Article  PubMed  CAS  Google Scholar 

  23. Biancotto A, Grivel JC, Iglehart SJ, et al.: Abnormal activation and cytokine spectra in lymph nodes of people chronically infected with HIV-1. Blood 2007, 109:4272–2479.

    Article  PubMed  CAS  Google Scholar 

  24. Mueller YM, Bojczuk PM, Halstead ES, et al.: IL-15 enhances survival and function of HIV-specific CD8+ T cells. Blood 2003, 101:1024–1029.

    Article  PubMed  CAS  Google Scholar 

  25. Mastroianni CM, d’Ettorre G, Forcina G, et al.: Interleukin-15 enhances neutrophil functional activity in patients with human immunodeficiency virus infection. Blood 2000, 96:1979–1984.

    PubMed  CAS  Google Scholar 

  26. Stopak KS, Chiu YL, Kropp J, et al.: Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells. J Biol Chem 2007, 282:3539–3546.

    Article  PubMed  CAS  Google Scholar 

  27. Bettelli E, Korn T, Kuchroo VK: Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 2007, [Epub ahead of print].

  28. Ye P, Rodriguez FH, Kanaly S, et al.: Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001, 194:519–527.

    Article  PubMed  CAS  Google Scholar 

  29. Maek ANW, Buranapraditkun S, Klaewsongkram J, Ruxrungtham K: Increased interleukin-17 production both in helper T cell subset Th17 and CD4-negative T cells in human immunodeficiency virus infection. Viral Immunol 2007, 20:66–75.

    Article  Google Scholar 

  30. Bradney CP, Sempowski GD, Liao HX, et al.: Cytokines as adjuvants for the induction of anti-human immunodeficiency virus peptide immunoglobulin G (IgG) and IgA antibodies in serum and mucosal secretions after nasal immunization. J Virol 2002, 76:517–524.

    Article  PubMed  CAS  Google Scholar 

  31. Billaut-Mulot O, Idziorek T, Loyens M, et al.: Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine 2001, 19:2803–2811.

    Article  PubMed  CAS  Google Scholar 

  32. Sailer CA, Pott GB, Dinarello CA, et al.: Whole-blood interleukin-18 level during early HIV-1 infection is associated with reduced CXCR4 coreceptor expression and interferon-gamma levels. J Infect Dis 2007, 195:734–738.

    Article  PubMed  CAS  Google Scholar 

  33. Tornero C, Alberola J, Tamarit A, Navarro D: Effect of highly active anti-retroviral therapy and hepatitis C virus co-infection on serum levels of pro-inflammatory and immunoregulatory cytokines in human immunodeficiency virus-1-infected individuals. Clin Microbiol Infect 2006, 12:555–560.

    Article  PubMed  CAS  Google Scholar 

  34. Wiercinska-Drapalo A, Jaroszewicz J, Flisiak R, Prokopowicz D: Plasma interleukin-18 is associated with viral load and disease progression in HIV-1-infected patients. Microbes Infect 2004, 6:1273–1277.

    Article  PubMed  CAS  Google Scholar 

  35. Lindegaard B, Hansen AB, Pilegaard H, et al.: Adipose tissue expression of IL-18 and HIV-associated lipodystrophy. AIDS 2004, 18:1956–1958.

    Article  PubMed  Google Scholar 

  36. Lindegaard B, Hansen AB, Gerstoft J, Pedersen BK: High plasma level of interleukin-18 in HIV-infected subjects with lipodystrophy. J Acquir Immune Defic Syndr 2004, 36:588–593.

    Article  PubMed  CAS  Google Scholar 

  37. Falasca K, Manigrasso MR, Racciatti D, et al.: Associations between hypertriglyceridemia and serum ghrelin, adiponectin, and IL-18 levels in HIV-infected patients. Ann Clin Lab Sci 2006, 36:59–66.

    PubMed  CAS  Google Scholar 

  38. von Giesen HJ, Jander S, Koller H, Arendt G: Serum and cerebrospinal fluid levels of interleukin-18 in human immunodeficiency virus type 1-associated central nervous system disease. J Neurovirol 2004, 10:383–386.

    Article  Google Scholar 

  39. Ahmad R, Sindhu ST, Toma E, et al.: Elevated levels of circulating interleukin-18 in human immunodeficiency virus-infected individuals: role of peripheral blood mononuclear cells and implications for AIDS pathogenesis. J Virol 2002, 76:12448–12456.

    Article  PubMed  CAS  Google Scholar 

  40. Ahmad R, Iannello A, Samarani S, et al.: Contribution of platelet activation to plasma IL-18 concentrations in HIV-infected AIDS patients. AIDS 2006, 20:1907–1909.

    Article  PubMed  Google Scholar 

  41. Pugliese A, Vidotto V, Beltramo T, Torre D: Regulation of interleukin-18 by THP-1 monocytoid cells stimulated with HIV-1 and Nef viral protein. Eur Cytokine Netw 2005, 16:186–190.

    PubMed  CAS  Google Scholar 

  42. Shapiro L, Puren AJ, Barton HA, et al.: Interleukin 18 stimulates HIV type 1 in monocytic cells. Proc Natl Acad Sci U S A 1998, 95:12550–12555.

    Article  PubMed  CAS  Google Scholar 

  43. Torre D, Pugliese A, Speranza F, et al.: Role of interleukin-18 in human immunodeficiency virus type 1 infection. J Infect Dis 2002, 185:998–999.

    Article  PubMed  Google Scholar 

  44. Choi HJ, Dinarello CA, Shapiro L: Interleukin-18 inhibits human immunodeficiency virus type 1 production in peripheral blood mononuclear cells. J Infect Dis 2001, 184:560–568.

    Article  PubMed  CAS  Google Scholar 

  45. Sabat R, Wallace E, Endesfelder S, Wolk K: IL-19 and IL-20: two novel cytokines with importance in inflammatory diseases. Expert Opin Ther Targets 2007, 11:601–612.

    Article  PubMed  CAS  Google Scholar 

  46. Bettaccini AA, Baj A, Accolla RS, et al.: Proliferative activity of extracellular HIV-1 Tat protein in human epithelial cells: expression profile of pathogenetically relevant genes. BMC Microbiol 2005, 5:20.

    Article  PubMed  Google Scholar 

  47. Brandt K, Singh PB, Bulfone-Paus S, Ruckert R: Interleukin-21: a new modulator of immunity, infection, and cancer. Cytokine Growth Factor Rev 2007, 18:223–232.

    Article  PubMed  CAS  Google Scholar 

  48. Kastelein RA, Hunter CA, Cua DJ: Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25:221–242.

    Article  PubMed  CAS  Google Scholar 

  49. Lapenta C, Santini SM, Spada M, et al.: IFN-alpha-conditioned dendritic cells are highly efficient in inducing cross-priming CD8(+) T cells against exogenous viral antigens. Eur J Immunol 2006, 36:2046–2060.

    Article  PubMed  CAS  Google Scholar 

  50. Fakruddin JM, Lempicki RA, Gorelick RJ, et al.: Noninfectious papilloma virus-like particles inhibit HIV-1 replication: implications for immune control of HIV-1 infection by IL-27. Blood 2007, 109:1841–1849.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Poli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alfano, M., Crotti, A., Vicenzi, E. et al. New players in cytokine control of HIV infection. Curr HIV/AIDS Rep 5, 27–32 (2008). https://doi.org/10.1007/s11904-008-0005-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-008-0005-5

Keywords

Navigation