Skip to main content

Advertisement

Log in

Future Treatments of NASH

  • Fatty Liver Disease (SA Harrison and J George, Section Editors)
  • Published:
Current Hepatology Reports Aims and scope Submit manuscript

Abstract

NASH is a complex metabolic disease best understood by recognizing the sources and fates of major metabolic substrates (carbohydrates and fatty acids) and how their excess can lead to lipotoxic liver injury with a histological phenotype of NASH. With this perspective, targets of therapy can be predicted. This review summarizes recent clinical trial data and where these trials fit into the substrate overload lipotoxic liver injury paradigm of NASH pathogenesis. Because NASH is likely the result of diverse environmental, genetic, and epigenetic factors that differ among patients, no single therapy is likely to be effective in all patients. Ultimately, rationally designed personalized therapy will be achieved for patients with NASH, but this will require substantial new knowledge on why patients respond to specific therapies, a goal that remains elusive. Hopefully, this gap in knowledge will be addressed by analysis of responders and non-responders in current and future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

NASH:

Nonalcoholic steatohepatitis

NAFLD:

Nonalcoholic fatty liver disease

DNL:

De novo lipogenesis

PPAR:

Peroxisomal proliferator activated receptor

FXR:

Farnesol X receptor

SGLT2:

Sodium glucose cotransporter 2

GLP:

Glucagon-like peptide

DPP:

Dipeptidyl dipeptidase-4

FGF:

Fibroblast growth factor

CoA:

Coenzyme A

SREPBP:

Sterol response element binding protein

ACC:

Acetyl-CoA carboxylase

FAS:

Fatty acid synthetase

SCD:

Stearoyl-CoA desaturase

SAMe:

S-adenosylmethionine

PDE-4:

Phosphodiesterase-4

CCR:

Chemokine receptor

ELF:

European liver fibrosis

Loxl2:

Lysl oxidase-like protein 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol. 2003;14:281–7.

    Article  CAS  PubMed  Google Scholar 

  2. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28:360–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology. 2010;52:774–88.

    Article  PubMed  Google Scholar 

  4. Trauner M, Arrese M, Wagner M. Fatty liver and lipotoxicity. Biochim Biophys Acta. 1801;2010:299–310.

    Google Scholar 

  5. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25.

    Article  CAS  PubMed  Google Scholar 

  6. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52:165–74.

    Article  CAS  PubMed  Google Scholar 

  7. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5.

    Article  CAS  PubMed  Google Scholar 

  8. Day CP, James OF. Hepatic steatosis: innocent bystander or guilty party? Hepatology. 1998;27:1463–6.

    Article  CAS  PubMed  Google Scholar 

  9. Angulo P, Kleiner DE, Dam-Larsen S, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–97.

    Article  PubMed  Google Scholar 

  10. Lassailly G, Caiazzo R, Buob D, et al. Bariatric surgery reduces features of nonalcoholic steatohepatitis in morbidly obese patients. Gastroenterology. 2015;149:379–88.

    Article  PubMed  Google Scholar 

  11. Ratziu V, Harrison S, Francque S, et al. Elafibranor, an agonist of the peroxisome proliferator−activated receptor−α and −δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016. doi:10.1053/j.gastro.2016.01.038. Randomized clinical trial demonstrating a benefit of elafibranor. The benefit appeared more in those with advanced disease.

    PubMed  Google Scholar 

  12. Cariou B, Hanf R, Lambert-Porcheron S, et al. Dual peroxisome proliferator-activated receptor α/δ agonist GFT505 improves hepatic and peripheral insulin sensitivity in abdominally obese subjects. Diabetes Care. 2013;36:2923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bojic LA, Huff MW. Peroxisome proliferator-activated receptor δ: a multifaceted metabolic player. Curr Opin Lipidol. 2013;24:171–7.

    Article  CAS  PubMed  Google Scholar 

  14. Risérus U, Sprecher D, Johnson T, et al. Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes. 2008;57:332–9.

    Article  PubMed  Google Scholar 

  15. Stefan N, Thamer C, Staiger H, et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J Clin Endocrinol Metab. 2007;92:1827–33.

    Article  CAS  PubMed  Google Scholar 

  16. Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xue R, Lynes MD, Dreyfuss JM, et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med. 2015;21:760–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shinoda K, Luijten IH, Hasegawa Y, et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med. 2015;21:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    Article  CAS  PubMed  Google Scholar 

  20. Rajeev SP, Cuthbertson DJ, Wilding JP. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes Metab. 2016;18:125–34.

    Article  CAS  PubMed  Google Scholar 

  21. Trevaskis JL, Griffin PS, Wittmer C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–72.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679–90. Recent small randomized clinical trial showing a significant beneficial effect of the GLP-1 analogue liraglutide on the resolution of NASH.

    Article  CAS  PubMed  Google Scholar 

  23. Liu JJ, Foo JP, Liu S, et al. The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res Clin Pract. 2015;108:382–9.

    Article  CAS  PubMed  Google Scholar 

  24. Dasarathy S, Yang Y, McCullough AJ, et al. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol. 2011;23:382–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samson SL, Sathyanarayana P, Jogi M, et al. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia. 2011;54:3093–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Trauner M, Claudel T, Fickert P, et al. Bile acids as regulators of hepatic lipid and glucose metabolism. Dig Dis. 2010;28:220–4.

    Article  PubMed  Google Scholar 

  27. Cariou B, Bouchaert E, Abdelkarim M, et al. FXR-deficiency confers increased susceptibility to torpor. FEBS Lett. 2007;581:5191–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    Article  CAS  PubMed  Google Scholar 

  29. Teodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of whole-body energy metabolism. Trends Endocrinol Metab. 2011;22:458–66.

    Article  CAS  PubMed  Google Scholar 

  30. Cyphert HA, Ge X, Kohan AB, et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem. 2012;287:25123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

    Article  CAS  PubMed  Google Scholar 

  33. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65. Randomized clinical trial showing that the FXR ligand obeticholic acid improved NASH in some patients but was accompanied by elevations in total and HDL cholesterol.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Erion MD, Cable EE, Ito BR, et al. Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci U S A. 2007;104:15490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cable EE, Finn PD, Stebbins JW, et al. Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology. 2009;49:407–17.

    Article  CAS  PubMed  Google Scholar 

  36. Perry RJ, Kim T, Zhang XM, et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 2013;18:740–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perry RJ, Zhang D, Zhang XM, et al. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science. 2015;347:1253–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yehuda-Shnaidman E, Kalderon B, Bar-Tana J. Thyroid hormone, thyromimetics, and metabolic efficiency. Endocr Rev. 2014;35:35–58.

    Article  CAS  PubMed  Google Scholar 

  39. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pickens MK, Yan JS, Ng RK, et al. Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis. J Lipid Res. 2009;50:2072–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pickens MK, Ogata H, Soon RK, et al. Dietary fructose exacerbates hepatocellular injury when incorporated into a methionine-choline-deficient diet. Liver Int. 2010;30:1229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Safadi R, Konikoff FM, Mahamid M, et al. The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2014;12:2085–91.

    Article  CAS  PubMed  Google Scholar 

  43. Flowers MT, Groen AK, Oler AT, et al. Cholestasis and hypercholesterolemia in SCD1-deficient mice fed a low-fat, high-carbohydrate diet. J Lipid Res. 2006;47:2668–80.

    Article  CAS  PubMed  Google Scholar 

  44. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–85. The PIVENS trial demonstrated improvement in NASH with pioglitazone but with weight gain in some patients. Vitamin E also resulted in improvement in some patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ratziu V, Charlotte F, Bernhardt C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51:445–53.

    Article  CAS  PubMed  Google Scholar 

  46. Bell LN, Wang J, Muralidharan S, et al. Relationship between adipose tissue insulin resistance and liver histology in nonalcoholic steatohepatitis: a pioglitazone versus vitamin E versus placebo for the treatment of nondiabetic patients with nonalcoholic steatohepatitis trial follow-up study. Hepatology. 2012;56:1311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Iyer A, Fairlie DP, Prins JB, et al. Inflammatory lipid mediators in adipocyte function and obesity. Nat Rev Endocrinol. 2010;6:71–82.

    Article  CAS  PubMed  Google Scholar 

  48. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–74.

    Article  CAS  PubMed  Google Scholar 

  49. Lindor KD, Kowdley KV, Heathcote EJ, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39:770–8.

    Article  CAS  PubMed  Google Scholar 

  50. Sanyal AJ, Abdelmalek MF, Suzuki A, et al. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147:377–84. No benefit from treatment with this polyunsaturated fatty acid ethyl ester in a large multicenter controlled trial.

    Article  CAS  PubMed  Google Scholar 

  51. Lirussi F, Azzalini L, Orando S, et al. Antioxidant supplements for non-alcoholic fatty liver disease and/or steatohepatitis. Cochrane Database Syst Rev. 2007;4. doi:10.1002/14651858.CD004996.pub3.

  52. Bell LN, Molleston JP, Morton MJ, et al. Hepatic lipid peroxidation and cytochrome P-450 2E1 in pediatric nonalcoholic fatty liver disease and its subtypes. J Clin Gastroenterol. 2011;45:800–7.

    Article  CAS  PubMed  Google Scholar 

  53. Lavine JE, Schwimmer JB, Van Natta ML, et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA. 2011;305:1659–68. Randomized clinical trial demonstrating the effect of vitamin E in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abdelmalek MF, Sanderson SO, Angulo P, et al. Betaine for nonalcoholic fatty liver disease: results of a randomized placebo-controlled trial. Hepatology. 2009;50:1818–26.

    Article  CAS  PubMed  Google Scholar 

  55. Anstee QM, Day CP. S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol. 2012;57:1097–109.

    Article  CAS  PubMed  Google Scholar 

  56. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–90.

    Article  CAS  PubMed  Google Scholar 

  57. Abu-Shanab A, Quigley EM. The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7:691–701.

    Article  PubMed  Google Scholar 

  58. Feldstein AE. Novel insights into the pathophysiology of nonalcoholic fatty liver disease. Semin Liver Dis. 2010;30:391–401.

    Article  CAS  PubMed  Google Scholar 

  59. Savard C, Tartaglione EV, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology. 2013;57:81–92.

    Article  CAS  PubMed  Google Scholar 

  60. Lanaspa MA, Sanchez-Lozada LG, Cicerchi C, et al. Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS ONE. 2012;7:e47948. doi:10.1371/journal.pone.0047948

  61. Szabo G, Petrasek J. Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol. 2015;12:387–400.

    Article  CAS  PubMed  Google Scholar 

  62. Wree A, Mehal WZ, Feldstein AE. Targeting cell death and sterile inflammation loop for the treatment of nonalcoholic steatohepatitis. Semin Liver Dis. 2016;36:27–36.

    Article  CAS  PubMed  Google Scholar 

  63. Machado MV, Diehl AM. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology. 2016. doi:10.1053/j.gastro.2016.02.066. Excellent update on how the reponse to lipotoxic injury plays a role in the outcome.

    PubMed  Google Scholar 

  64. Ratziu V, Bedossa P, Francque SM, et al. Lack of efficacy of an inhibitor of PDE4 in phase 1 and 2 trials of patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2014;12:1724–30 e5. A potent antiinflammatory phosphodiesterase-4 inhibitor did not improve NASH.

  65. Zein CO, Yerian LM, Gogate P, et al. Pentoxifylline improves nonalcoholic steatohepatitis: a randomized placebo-controlled trial. Hepatology. 2011;54:1610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Van Wagner LB, Koppe SWP, Brunt EM, et al. Pentoxifylline for the treatment of non-alcoholic steatohepatitis: a randomized controlled trial. Ann Hepatol. 2011;10:277–86.

    PubMed  Google Scholar 

  67. Ratziu V, Sheikh MY, Sanyal AJ, et al. A phase 2, randomized, double-blind, placebo-controlled study of GS-9450 in subjects with nonalcoholic steatohepatitis. Hepatology. 2012;55:419–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int. 2015;35:953–66.

    Article  CAS  PubMed  Google Scholar 

  69. Traber PG, Zomer E. Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS ONE. 2013;8:e83481. doi:10.1371/journal.pone.0083481

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Neuschwander-Tetri.

Ethics declarations

Conflict of Interest

BANT reports personal fees from Nimbus Therapeutics, Bristol Myers Squibb, Janssen, Conatus, Galmed, Genetech-Roche, and Boehringer-Ingelheim, and personal fees and consultancy for Receptos, Pfizer, and Zafgen, outside the submitted work.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and were in compliance with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Fatty Liver Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuschwander-Tetri, B.A. Future Treatments of NASH. Curr Hepatology Rep 15, 125–133 (2016). https://doi.org/10.1007/s11901-016-0300-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11901-016-0300-3

Keywords

Navigation