Skip to main content

Advertisement

Log in

MLL-Rearranged Acute Lymphoblastic Leukemia

  • Acute Lymphocytic Leukemias (K Ballen and M Keng, Section Editors)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Rearrangements of the histone lysine [K]-MethylTransferase 2A gene (KMT2A) gene on chromosome 11q23, formerly known as the mixed-lineage leukemia (MLL) gene, are found in 10% and 5% of adult and children ALL cases, respectively. The most common translocated genes are AFF1 (formerly AF4), MLLT3 (formerly AF9), and MLLT1 (formerly ENL). The bimodal incidence of MLL-r-ALL usually peaks in infants in their first 2 years of life and then declines thereafter during the pediatric/young adult phase until it increases again with age. MLL-rearranged ALL (MLL-r-ALL) is characterized by hyperleukocytosis, aggressive behavior with early relapse, relatively high incidence of central nervous system (CNS) involvement, and poor prognosis.

Recent Findings

MLL-r-ALL cells are characterized by relative resistance to corticosteroids (due to Src kinase-induced phosphorylation of annexin A2) and L-asparaginase therapy, but they are sensitive to cytarabine chemotherapy (due to increased levels of hENT1 expression). Potential therapeutic targets include FLT3 inhibitors, MEK inhibitors, HDAC inhibitors, BCL-2 inhibitors, MCL-1 inhibitors, proteasome inhibitors, hypomethylating agents, Dot1L inhibitors, and CDK inhibitors.

Summary

In this review, we discuss MLL-r-ALL focusing on clinical presentation, risk stratification, drug resistance, and treatment strategies, including potential novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM. Acute leukemia incidence and patient survival among children and adults in the United States, 2001-2007. Blood. 2012;119(1):34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nilson I, Löchner K, Siegler G, Greil J, Beck JD, Fey GH, et al. Exon/intron structure of the human ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias. Br J Haematol. 1996;93(4):966–72.

    Article  CAS  PubMed  Google Scholar 

  3. Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa R 3rd, Patel Y, Harden A, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A. 1991;88(23):10735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, et al. Prognostic effect of chromosomal abnormalities in childhood B-cell precursor acute lymphoblastic leukaemia: results from the UK Medical Research Council ALL97/99 randomised trial. Lancet Oncol. 2010;11(5):429–38.

    Article  CAS  PubMed  Google Scholar 

  5. Behm FG, Raimondi SC, Frestedt JL, Liu Q, Crist WM, Downing JR, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood. 1996;87(7):2870–7.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15.

    Article  CAS  PubMed  Google Scholar 

  7. •• Meyer C, Burmeister T, Gröger D, et al. The MLL recombinome of acute leukemias in 2017. Leukemia. 2018;32(2):273–84 The most comprehensive up-to-date molecular characterization analysis of the MLL recombinome breakpoints allowing the correlation of functional domains of the MLL gene with clinical outcome.

    Article  CAS  PubMed  Google Scholar 

  8. Pulte D, Jansen L, Gondos A, Katalinic A, Barnes B, Ressing M, et al. Survival of adults with acute lymphoblastic leukemia in Germany and the United States. PLoS One. 2014;9(1):e85554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gökbuget N, Hoelzer D. Treatment of adult acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2006:133–41.

  10. Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell. 1992;71(4):691–700.

    Article  CAS  PubMed  Google Scholar 

  11. Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71(4):701–8.

    Article  CAS  PubMed  Google Scholar 

  12. Butler LH, Slany R, Cui X, Cleary ML, Mason DY. The HRX proto-oncogene product is widely expressed in human tissues and localizes to nuclear structures. Blood. 1997;89(9):3361–70.

    Article  CAS  PubMed  Google Scholar 

  13. Schuettengruber B, Martinez AM, Iovino N, Cavalli G. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12(12):799–814.

    Article  CAS  PubMed  Google Scholar 

  14. Khalidi HS, Chang KL, Medeiros LJ, Brynes RK, Slovak ML, Murata-Collins JL, et al. Acute lymphoblastic leukemia: survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol. 1999;111(4):467–76.

    Article  CAS  PubMed  Google Scholar 

  15. Pui CH, Rubnitz JE, Hancock ML, Downing JR, Raimondi SC, Rivera GK, et al. Reappraisal of the clinical and biologic significance of myeloid-associated antigen expression in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16(12):3768–73.

    Article  CAS  PubMed  Google Scholar 

  16. Marschalek R. Systematic classification of mixed-lineage leukemia fusion partners predicts additional cancer pathways. Ann Lab Med. 2016;36(2):85–100.

    Article  CAS  PubMed  Google Scholar 

  17. Ma C, Staudt LM. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood. 1996;87(2):734–45.

    Article  CAS  PubMed  Google Scholar 

  18. Li Q, Frestedt JL, Kersey JH. AF4 encodes a ubiquitous protein that in both native and MLL-AF4 fusion types localizes to subnuclear compartments. Blood. 1998;92(10):3841–7.

    Article  CAS  PubMed  Google Scholar 

  19. Erfurth F, Hemenway CS, de Erkenez AC, Domer PH. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia. 2004;18(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  20. Bitoun E, Oliver PL, Davies KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet. 2007;16(1):92–106.

    Article  CAS  PubMed  Google Scholar 

  21. Mueller D, Bach C, Zeisig D, Garcia-Cuellar MP, Monroe S, Sreekumar A, et al. A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. Blood. 2007;110(13):4445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mueller D, García-Cuéllar MP, Bach C, Buhl S, Maethner E, Slany RK. Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 2009;7(11):e1000249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Yokoyama A, Lin M, Naresh A, Kitabayashi I, Cleary ML. A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription. Cancer Cell. 2010;17(2):198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell. 2014;159(3):558–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 2003;4(2):99–110.

    Article  CAS  PubMed  Google Scholar 

  26. Dobson CL, Warren AJ, Pannell R, Forster A, Rabbitts TH. Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 2000;19(5):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Martin ME, Milne TA, Bloyer S, Galoian K, Shen W, Gibbs D, et al. Dimerization of MLL fusion proteins immortalizes hematopoietic cells. Cancer Cell. 2003;4(3):197–207.

    Article  CAS  PubMed  Google Scholar 

  28. Okuda H, Kanai A, Ito S, Matsui H, Yokoyama A. AF4 uses the SL1 components of RNAP1 machinery to initiate MLL fusion- and AEP-dependent transcription. Nat Commun. 2015;6:8869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A, et al. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J. 2005;24(17):3136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB, et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood. 2005;106(7):2484–90.

    Article  CAS  PubMed  Google Scholar 

  31. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359(9321):1909–15.

    Article  PubMed  Google Scholar 

  32. Montes R, Ayllón V, Gutierrez-Aranda I, Prat I, Hernández-Lamas MC, Ponce L, et al. Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia. Blood. 2011;117(18):4746–58.

    Article  CAS  PubMed  Google Scholar 

  33. Vey N, Thomas X, Picard C, Kovascovicz T, Charin C, Cayuela JM, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2A-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20(12):2155–61.

    Article  CAS  PubMed  Google Scholar 

  34. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541–52.

    Article  CAS  PubMed  Google Scholar 

  35. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998;17(13):3714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J, et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res. 2009;69(3):1109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lawrence HJ, Helgason CD, Sauvageau G, Fong S, Izon DJ, Humphries RK, et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood. 1997;89(6):1922–30.

    Article  CAS  PubMed  Google Scholar 

  38. So CW, Karsunky H, Wong P, Weissman IL, Cleary ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood. 2004;103(8):3192–9.

    Article  CAS  PubMed  Google Scholar 

  39. • Stam RW, den Boer ML, Meijerink JP, et al. Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. Blood. 2003;101(4):1270–6. A paper showing the relative increased resistance of MLL-r-ALL cells to corticosteroids and L-asparaginase and increased sensitivity to cytarabine chemotherapy.

  40. • Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia--implications for treatment of infants. Leukemia. 1998;12(9):1344–8. A paper showing the relative increased resistance of MLL-r-ALL cells to corticosteroids and L-asparaginase and increased sensitivity to cytarabine chemotherapy.

  41. • Ramakers-van Woerden NL, Beverloo HB, Veerman AJ, et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia. 2004;18(3):521–9 Three papers showing the relative increased resistance of MLL-r-ALL cells to corticosteroids and L-asparaginase and increased sensitivity to cytarabine chemotherapy.

  42. Wiley JS, Jones SP, Sawyer WH, Paterson AR. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest. 1982;69(2):479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. White JC, Rathmell JP, Capizzi RL. Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. J Clin Invest. 1987;79(2):380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spijkers-Hagelstein JA, Mimoso Pinhanços S, Schneider P, Pieters R, Stam RW. Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia. 2013;27(5):1063–71.

    Article  CAS  PubMed  Google Scholar 

  45. Mackarehtschian K, Hardin JD, Moore KA, Boast S, Goff SP, Lemischka IR. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity. 1995;3(1):147–61.

    Article  CAS  PubMed  Google Scholar 

  46. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3(9):650–65.

    Article  CAS  PubMed  Google Scholar 

  47. Chillón MC, Gómez-Casares MT, López-Jorge CE, Rodriguez-Medina C, Molines A, Sarasquete ME, et al. Prognostic significance of FLT3 mutational status and expression levels in MLL-AF4+ and MLL-germline acute lymphoblastic leukemia. Leukemia. 2012;26(11):2360–6.

    Article  PubMed  CAS  Google Scholar 

  48. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer M, Minden MD, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  49. Prelle C, Bursen A, Dingermann T, Marschalek R. Secondary mutations in t(4;11) leukemia patients. Leukemia. 2013;27(6):1425–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cooper TM, Cassar J, Eckroth E, Malvar J, Sposto R, Gaynon P, et al. A phase I study of quizartinib combined with chemotherapy in relapsed childhood leukemia: a therapeutic advances in childhood leukemia & lymphoma (TACL) study. Clin Cancer Res. 2016;22(16):4014–22.

    Article  CAS  PubMed  Google Scholar 

  51. Salzer WL, Jones TL, Devidas M, Dreyer ZE, Gore L, Winick NJ, et al. Decreased induction morbidity and mortality following modification to induction therapy in infants with acute lymphoblastic leukemia enrolled on AALL0631: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62(3):414–8.

    Article  PubMed  Google Scholar 

  52. Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005;105(2):812–20.

    Article  CAS  PubMed  Google Scholar 

  53. Brown P, Levis M, McIntyre E, Griesemer M, Small D. Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner. Leukemia. 2006;20(8):1368–76.

    Article  CAS  PubMed  Google Scholar 

  54. Driessen EM, van Roon EH, Spijkers-Hagelstein JA, et al. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andersson AK, Ma J, Wang J, Chen X, Gedman AL, Dang J, et al. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47(4):330–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Emerenciano M, Barbosa TAC, de Almeida Lopes B, Meyer C, Marschalek R, Pombo-de-Oliveira MS. Subclonality and prenatal origin of RAS mutations in KMT2A (MLL)-rearranged infant acute lymphoblastic leukaemia. Br J Haematol. 2015;170(2):268–71.

    Article  CAS  PubMed  Google Scholar 

  57. Kerstjens M, Driessen EM, Willekes M, Pinhanços SS, Schneider P, Pieters R, et al. MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations. Oncotarget. 2017;8(9):14835–46.

    Article  PubMed  Google Scholar 

  58. Garrido Castro P, van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, et al. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia. 2018;32(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  59. Tonelli R, Sartini R, Fronza R, Freccero F, Franzoni M, Dongiovanni D, et al. G1 cell-cycle arrest and apoptosis by histone deacetylase inhibition in MLL-AF9 acute myeloid leukemia cells is p21 dependent and MLL-AF9 independent. Leukemia. 2006;20(7):1307–10.

    Article  CAS  PubMed  Google Scholar 

  60. Stumpel DJ, Schneider P, Seslija L, Osaki H, Williams O, Pieters R, et al. Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia. 2012;26(4):682–92.

    Article  CAS  PubMed  Google Scholar 

  61. Bhatla T, Wang J, Morrison DJ, Raetz EA, Burke MJ, Brown P, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood. 2012;119(22):5201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nicholson DW. From bench to clinic with apoptosis-based therapeutic agents. Nature. 2000;407(6805):810–6.

    Article  CAS  PubMed  Google Scholar 

  63. Robinson BW, Behling KC, Gupta M, Zhang AY, Moore JS, Bantly AD, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol. 2008;141(6):827–39.

    Article  CAS  PubMed  Google Scholar 

  64. Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, et al. MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199. Cell Rep. 2015;13(12):2715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Michels J, Johnson PW, Packham G. Mcl-1. Int J Biochem Cell Biol. 2005;37(2):267–71.

    Article  CAS  PubMed  Google Scholar 

  66. Lømo J, Smeland EB, Krajewski S, Reed JC, Blomhoff HK. Expression of the Bcl-2 homologue Mcl-1 correlates with survival of peripheral blood B lymphocytes. Cancer Res. 1996;56(1):40–3.

    PubMed  Google Scholar 

  67. Stam RW, Den Boer ML, Schneider P, et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2010;115(5):1018–25.

    Article  CAS  PubMed  Google Scholar 

  68. Liu H, Westergard TD, Cashen A, Piwnica-Worms DR, Kunkle L, Vij R, et al. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell. 2014;25(4):530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stumpel DJ, Schneider P, van Roon EH, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood. 2009;114(27):5490–8.

    Article  CAS  PubMed  Google Scholar 

  70. Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood. 2010;115(23):4798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 2002;12(12):1052–8.

    Article  CAS  PubMed  Google Scholar 

  72. Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D, et al. Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood. 2013;121(13):2533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013;122(6):1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Campbell CT, Haladyna JN, Drubin DA, et al. Mechanisms of Pinometostat (EPZ-5676) treatment-emergent resistance in. Mol Cancer Ther. 2017;16(8):1669–79.

    Article  CAS  PubMed  Google Scholar 

  75. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta. 2002;1602(1):73–87.

    CAS  PubMed  Google Scholar 

  76. van der Linden MH, Willekes M, van Roon E, Seslija L, Schneider P, Pieters R, et al. MLL fusion-driven activation of CDK6 potentiates proliferation in MLL-rearranged infant ALL. Cell Cycle. 2014;13(5):834–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Placke T, Faber K, Nonami A, Putwain SL, Salih HR, Heidel FH, et al. Requirement for CDK6 in MLL-rearranged acute myeloid leukemia. Blood. 2014;124(1):13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baker A, Gregory GP, Verbrugge I, Kats L, Hilton JJ, Vidacs E, et al. The CDK9 inhibitor dinaciclib exerts potent apoptotic and antitumor effects in preclinical models of MLL-rearranged acute myeloid leukemia. Cancer Res. 2016;76(5):1158–69.

    Article  CAS  PubMed  Google Scholar 

  79. Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med. 2016;375(8):740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wölfl M, Rasche M, Eyrich M, Schmid R, Reinhardt D, Schlegel PG. Spontaneous reversion of a lineage switch following an initial blinatumomab-induced ALL-to-AML switch in. Blood Adv. 2018;2(12):1382–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Y, Yu W, Liu QF, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of patients with mixed-lineage-leukemia-rearranged acute leukemia: results from a prospective, multi-center study. Am J Hematol. 2014;89(2):130–6.

    Article  PubMed  Google Scholar 

  84. Thomas X, Boiron JM, Huguet F, Dombret H, Bradstock K, Vey N, et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol. 2004;22(20):4075–86.

    Article  CAS  PubMed  Google Scholar 

  85. Mann G, Attarbaschi A, Schrappe M, de Lorenzo P, Peters C, Hann I, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant-99 Study. Blood. 2010;116(15):2644–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen K. Ballen.

Ethics declarations

Conflict of Interest

The other authors have no relevant conflicts of interest to report.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Acute Lymphocytic Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Chaer, F., Keng, M. & Ballen, K.K. MLL-Rearranged Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 15, 83–89 (2020). https://doi.org/10.1007/s11899-020-00582-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00582-5

Keywords

Navigation