Skip to main content

Advertisement

Log in

Novel Treatment Strategies in the Management of Waldenström Macroglobulinemia

  • Multiple Myeloma (P Kapoor, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Recent advances the genomic profiling of patients with Waldenström macroglobulinemia (WM) have led to the identification of novel therapeutic targets in these patients. In this review, we cover the current standard of care and the recently evaluated novel approaches with high potential to be incorporated in the therapeutic armamentarium against WM.

Recent Findings

The MYD88L265P mutation is the most common genomic abnormality in WM, and is encountered in 80–95% of patients, making it an important target for drug development. The success of the first-generation Bruton tyrosine kinase (BTK) inhibitor, ibrutinib, has generated tremendous interest in the study of more selective and potent BTK inhibitors. Additionally, the identification of CXCR4WHIM mutations in up to approximately 40% of patients with WM has fueled research regarding their implication on systemic therapy in WM.

Summary

In a rapidly advancing field of targeted therapies, the treatment options for patients with WM are expanding as researchers continue to uncover and harness the survival pathways active in this hematologic malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

Ibrutinib and rituximab

MRR:

Major response rate (≥ partial response)

NA:

Not available

ORR:

Overall response rate

OS:

Overall survival

PFS:

Progression-free survival

R:

Rituximab

RR:

Relapsed refractory

TN:

Treatment naïve

CAR-T:

Chimeric antigen receptor

CLL:

Chronic lymphocytic leukemia

DRC:

Dexamethasone, rituximab, cyclophosphamide

PI3K:

Phosphoinositide 3-kinase

MCL:

Mantle cell lymphoma

MZL:

Marginal zone lymphoma

WM:

Waldenstrom macroglobulinemia

References

  1. Gertz MA. Waldenstrom macroglobulinemia. Hematology. 2012;17(Suppl 1):S112–6.

    CAS  PubMed  Google Scholar 

  2. Correa JG, Cibeira MT, Tovar N, Isola I, Pedrosa F, Diaz T, et al. Prevalence and prognosis implication of MYD88 L265P mutation in IgM monoclonal gammopathy of undetermined significance and smouldering Waldenstrom macroglobulinaemia. Br J Haematol. 2017;179(5):849–51.

    CAS  PubMed  Google Scholar 

  3. Bustoros M, Sklavenitis-Pistofidis R, Kapoor P, Liu CJ, Kastritis E, Zanwar S, et al. Progression risk stratification of asymptomatic Waldenstrom macroglobulinemia. J Clin Oncol. 2019;37(16):1403–11.

    CAS  PubMed  Google Scholar 

  4. Kyle RA, Treon SP, Alexanian R, Barlogie B, Björkholm M, Dhodapkar M, et al. Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin Oncol. 2003;30(2):116–20.

    PubMed  Google Scholar 

  5. Durot E, Tomowiak C, Michallet AS, Dupuis J, Hivert B, Lepretre S, et al. Transformed Waldenstrom macroglobulinaemia: clinical presentation and outcome. A multi-institutional retrospective study of 77 cases from the French Innovative Leukemia Organization (FILO). Br J Haematol. 2017;179(3):439–48.

    CAS  PubMed  Google Scholar 

  6. Zanwar S, Abeykoon JP, Ansell SM, Gertz MA, Dispenzieri A, Muchtar E, et al. Primary systemic amyloidosis in patients with Waldenstrom macroglobulinemia. Leukemia. 2019;33(3):790–4.

    PubMed  Google Scholar 

  7. Zanwar S, Abeykoon JP, Durot E, King R, Perez Burbano GE, Kumar S, et al. Impact of MYD88(L265P) mutation status on histological transformation of Waldenstrom macroglobulinemia. Am J Hematol. 2019.

  8. Abeykoon JP, Yanamandra U, Kapoor P. New developments in the management of Waldenstrom macroglobulinemia. Cancer Manag Res. 2017;9:73–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Leblond V, Johnson S, Chevret S, Copplestone A, Rule S, Tournilhac O, et al. Results of a randomized trial of chlorambucil versus fludarabine for patients with untreated Waldenstrom macroglobulinemia, marginal zone lymphoma, or lymphoplasmacytic lymphoma. J Clin Oncol. 2013;31(3):301–7.

    CAS  PubMed  Google Scholar 

  10. Tedeschi A, Benevolo G, Varettoni M, Battista ML, Zinzani PL, Visco C, et al. Fludarabine plus cyclophosphamide and rituximab in Waldenstrom macroglobulinemia: an effective but myelosuppressive regimen to be offered to patients with advanced disease. Cancer. 2012;118(2):434–43.

    PubMed  Google Scholar 

  11. Buske C, Hoster E, Dreyling M, Eimermacher H, Wandt H, Metzner B, et al. The addition of rituximab to front-line therapy with CHOP (R-CHOP) results in a higher response rate and longer time to treatment failure in patients with lymphoplasmacytic lymphoma: results of a randomized trial of the German Low-Grade Lymphoma Study Group (GLSG). Leukemia. 2009;23(1):153–61.

    PubMed  Google Scholar 

  12. Leleu X, Soumerai J, Roccaro A, Hatjiharissi E, Hunter ZR, Manning R, et al. Increased incidence of transformation and myelodysplasia/acute leukemia in patients with Waldenstrom macroglobulinemia treated with nucleoside analogs. J Clin Oncol. 2009;27(2):250–5.

    PubMed  Google Scholar 

  13. Kapoor P, Ansell SM, Fonseca R, Chanan-Khan A, Kyle RA, Kumar SK, et al. Diagnosis and management of Waldenstrom macroglobulinemia: Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines 2016. JAMA Oncol. 2017;3(9):1257–65.

    PubMed  PubMed Central  Google Scholar 

  14. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367(9):826–33.

    CAS  PubMed  Google Scholar 

  15. Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenstrom’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121(13):2522–8.

    CAS  PubMed  Google Scholar 

  16. Abeykoon JP, Paludo J, King RL, Ansell SM, Gertz MA, LaPlant BR, et al. MYD88 mutation status does not impact overall survival in Waldenstrom macroglobulinemia. Am J Hematol. 2018;93(2):187–94.

    PubMed  Google Scholar 

  17. Yu X, Li W, Deng Q, Li L, Hsi ED, Young KH, et al. MYD88 L265P mutation in lymphoid malignancies. Cancer Res. 2018;78(10):2457–62.

    CAS  PubMed  Google Scholar 

  18. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58–73.

    CAS  PubMed  Google Scholar 

  19. Yang G, Buhrlage SJ, Tan L, Liu X, Chen J, Xu L, et al. HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127(25):3237–52.

    CAS  PubMed  Google Scholar 

  20. Moriuchi M, Moriuchi H, Turner W, Fauci AS. Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J Immunol. 1997;159(9):4322–9.

    CAS  PubMed  Google Scholar 

  21. Caruz A, Samsom M, Alonso JM, Alcami J, Baleux F, Virelizier JL, et al. Genomic organization and promoter characterization of human CXCR4 gene. FEBS Lett. 1998;426(2):271–8.

    CAS  PubMed  Google Scholar 

  22. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    CAS  PubMed  Google Scholar 

  23. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791–6.

    CAS  PubMed  Google Scholar 

  24. Xu L, Hunter ZR, Tsakmaklis N, Cao Y, Yang G, Chen J, et al. Clonal architecture of CXCR4 WHIM-like mutations in Waldenstrom macroglobulinaemia. Br J Haematol. 2016;172(5):735–44.

  25. Roccaro AM, Sacco A, Jimenez C, Maiso P, Moschetta M, Mishima Y, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123(26):4120–31.

    CAS  PubMed  Google Scholar 

  26. Dimopoulos MA, Tedeschi A, Trotman J, García-Sanz R, Macdonald D, Leblond V, et al. Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia. N Engl J Med. 2018;378(25):2399–410.

    CAS  PubMed  Google Scholar 

  27. Tedeschi A, Picardi P, Ferrero S, Benevolo G, Margiotta Casaluci G, Varettoni M, et al. Bendamustine and rituximab combination is safe and effective as salvage regimen in Waldenstrom macroglobulinemia. Leuk Lymphoma. 2015;56(9):2637–42.

    Google Scholar 

  28. Rummel MJ, Niederle N, Maschmeyer G, Banat GA, von Grünhagen U, Losem C, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10.

    CAS  Google Scholar 

  29. Owen RG, McCarthy H, Rule S, D'Sa S, Thomas SK, Tournilhac O, et al. Acalabrutinib monotherapy in patients with Waldenstrom macroglobulinemia: a single-arm, multicentre, phase 2 study. Lancet Haematol 2020;7(2);e112–121. https://www.sciencedirect.com/science/article/abs/pii/S2352302619302108

    PubMed  Google Scholar 

  30. Laribi K, Poulain S, Willems L, Merabet F, Le Calloch R, Eveillard JR, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2019;186(1):146–9.

    PubMed  Google Scholar 

  31. Kastritis E, Gavriatopoulou M, Kyrtsonis M-C, Roussou M, Hadjiharissi E, Symeonidis A, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenström macroglobulinemia: final analysis of a phase 2 study. Blood. 2015;126(11):1392–4.

    PubMed  Google Scholar 

  32. Abeykoon JP, Zanwar S, Ansell SM, Kumar S, Thompson CA, Habermann TM, et al. Outcomes with rituximab plus bendamustine (R-Benda), dexamethasone, rituximab, cyclophosphamide (DRC), and bortezomib, dexamethasone, rituximab (BDR) as primary therapy in patients with Waldenstrom macroglobulinemia (WM). J Clin Oncol. 2019;37(15_suppl):7509.

    Google Scholar 

  33. Castillo JJ, Gustine JN, Meid K, Dubeau TE, Severns P, Xu L, et al. Response and survival for primary therapy combination regimens and maintenance rituximab in Waldenstrom macroglobulinaemia. Br J Haematol. 2018;181(1):77–85.

    CAS  PubMed  Google Scholar 

  34. Paludo J, Abeykoon JP, Shreders A, Ansell SM, Kumar S, Ailawadhi S, et al. Bendamustine and rituximab (BR) versus dexamethasone, rituximab, and cyclophosphamide (DRC) in patients with Waldenstrom macroglobulinemia. Ann Hematol. 2018;97(8):1417–25.

    CAS  PubMed  Google Scholar 

  35. Rummel MJ, Lerchenmüller C, Hensel M, Goerner M, Buske C, Schulz H, et al. Two years rituximab maintenance vs. observation after first line treatment with bendamustine plus rituximab (B-R) in patients with Waldenström’s macroglobulinemia (MW): results of a prospective, randomized, multicenter phase 3 study (the StiL NHL7–2008 MAINTAIN trial). Blood. 2019;134(Supplement_1):343.

    Google Scholar 

  36. Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015;94(3):193–205.

    CAS  PubMed  Google Scholar 

  38. Argyropoulos KV, Vogel R, Ziegler C, Altan-Bonnet G, Velardi E, Calafiore M, et al. Clonal B cells in Waldenstrom’s macroglobulinemia exhibit functional features of chronic active B-cell receptor signaling. Leukemia. 2016;30(5):1116–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.

  40. Treon SP, Tripsas CK, Meid K, Warren D, Varma G, Green R, et al. Ibrutinib in previously treated Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.

    CAS  PubMed  Google Scholar 

  41. Treon SP, Xu L, Hunter Z. MYD88 mutations and response to Ibrutinib in Waldenstrom’s macroglobulinemia. N Engl J Med. 2015;373(6):584–6.

    CAS  PubMed  Google Scholar 

  42. Treon SP, Gustine J, Meid K, Yang G, Xu L, Liu X, et al. Ibrutinib monotherapy in symptomatic, treatment-naive patients with Waldenstrom macroglobulinemia. J Clin Oncol. 2018;36(27):2755–61.

    CAS  PubMed  Google Scholar 

  43. Charalambous A, Schwarzbich MA, Witzens-Harig M. Ibrutinib. Recent Results Cancer Res. 2018;212:133–68.

    CAS  PubMed  Google Scholar 

  44. Treon S, Gustine J, Dubeau T, Palomba ML, Advani R, Castillo J. Ibrutinib shows prolonged progression-free survival in symptomatic, previously treated patients with MYD88 mutated Waldenstrom’s macroglobulinemia: long-term follow-up of pivotal trial (NCT01614821). EHA Libr. 2018;215492:PS1185.

    Google Scholar 

  45. Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, et al. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia. Leukemia. 2015;29(1):169–76.

    PubMed  Google Scholar 

  46. Castillo JJ, Xu L, Gustine JN, Keezer A, Meid K, Dubeau TE, et al. CXCR4 mutation subtypes impact response and survival outcomes in patients with Waldenstrom macroglobulinaemia treated with ibrutinib. Br J Haematol. 2019;187(3):356–63.

    CAS  PubMed  Google Scholar 

  47. Gustine JN, Xu L, Tsakmaklis N, Demos MG, Kofides A, Chen JG, et al. CXCR4 (S338X) clonality is an important determinant of ibrutinib outcomes in patients with Waldenstrom macroglobulinemia. Blood Adv. 2019;3(19):2800–3.

  48. Treon SP, Meid K, Gustine J, Bantilan KS, Dubeau T, Severns P, et al. Long-term follow-up of previously treated patients who received ibrutinib for symptomatic Waldenstrom’s macroglobulinemia: update of pivotal clinical trial. Blood. 2017;130(Suppl 1):2766.

    Google Scholar 

  49. Abeykoon JP, Zanwar S, Ansell SM, Gertz MA, Kumar S, Manske M, et al. Ibrutinib monotherapy outside of clinical trial setting in Waldenstrom macroglobulinaemia: practice patterns, toxicities and outcomes. Br J Haematol. 2019.

  50. Castillo JJ, Treon SP. What is new in the treatment of Waldenstrom macroglobulinemia? Leukemia. 2019.

    PubMed  Google Scholar 

  51. Lipsky AH, Farooqui MZ, Tian X, Martyr S, Cullinane AM, Nghiem K, et al. Incidence and risk factors of bleeding-related adverse events in patients with chronic lymphocytic leukemia treated with ibrutinib. Haematologica. 2015;100(12):1571–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tam CS, LeBlond V, Novotny W, Owen RG, Tedeschi A, Atwal S, et al. A head-to-head phase III study comparing zanubrutinib versus ibrutinib in patients with Waldenstrom macroglobulinemia. Future Oncol (London, England). 2018;14(22):2229–37.

    CAS  Google Scholar 

  53. Kapoor P, Ansell SM. Acalabrutinib in mantle cell lymphoma. Lancet. 2018;391(10121):633–4.

    PubMed  Google Scholar 

  54. Trotman J, Opat S, Marlton P, Gottlieb D, Simpson D, Cull G, et al. Bruton’s tyrosine kinase (BTK) inhibitor BGB-3111 demonstrates high very good partial response (VGPR) rate in patients with Waldenström macroglobulinemia (WM). Hematol Oncol. 2017;35(S2):70–1.

    Google Scholar 

  55. Trotman J, Opat S, Marlton P, Gottlieb D, Simpson D, Cull G, et al. Updated safety and efficacy data in a phase 1/2 trial of patients with Waldenström macroglobulinaemia (WM) treated with the Bruton tyrosine kinase (BTK) inhibitor zanubrutinib (BGB-3111): PF481. HemaSphere. 2019;3:192–3.

    Google Scholar 

  56. Dimopoulos M, Opat S, Lee H-P, Cull G, D'Sa S, Owen R, et al. Major responses in MYD88 wildtype (MYD88WT) Waldenström macroglobulinemia (WM) patients treated with Bruton tyrosine kinase (BTK) inhibitor zanubrutinib (BGB-3111): PF487. HemaSphere. 2019;3:196.

    Google Scholar 

  57. Dimopoulos MA, Trotman J, Tedeschi A, Matous JV, Macdonald D, Tam C, et al. Ibrutinib for patients with rituximab-refractory Waldenstrom’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18(2):241–50.

    CAS  PubMed  Google Scholar 

  58. Munakata W. Phase 2 study of tirabrutinib (ONO/GS-4059), a second-generation Bruton’s tyrosine kinase inhibitor, monotherapy in patients with treatment-naive or relapsed/refractory Waldenstrom macroglobulinemia. Orlando: ASH; 2019.

    Google Scholar 

  59. Xu L, Tsakmaklis N, Yang G, Chen JG, Liu X, Demos M, et al. Acquired mutations associated with ibrutinib resistance in Waldenstrom macroglobulinemia. Blood. 2017;129(18):2519–25.

    CAS  PubMed  Google Scholar 

  60. Woyach JA, Furman RR, Liu T-M, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor Ibrutinib. N Engl J Med. 2014;370(24):2286–94.

    PubMed  Google Scholar 

  61. Chen LS, Bose P, Cruz ND, Jiang Y, Wu Q, Thompson PA, et al. A pilot study of lower doses of ibrutinib in patients with chronic lymphocytic leukemia. Blood. 2018;132(21):2249–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Dimopoulos MA, Tedeschi A, Trotman J, Garcia-Sanz R, Macdonald D, Leblond V, et al. Phase 3 trial of Ibrutinib plus rituximab in Waldenstrom’s macroglobulinemia. N Engl J Med. 2018;378(25):2399–410.

    CAS  PubMed  Google Scholar 

  63. Buske C, Tedeschi A, Trotman J, García-Sanz R, MacDonald D, Leblond V, et al. Ibrutinib treatment in Waldenström’s macroglobulinemia: follow-up efficacy and safety from the iNNOVATETM study. Blood. 2018;132(Supplement 1):149.

    Google Scholar 

  64. Yang G, Wang J, Liu X, Munshi M, Chen JG, Kofides A, et al. A novel HCK and BTK dual inhibitor Kin-8194 shows superior activity over ibrutinib and overcomes BTKC481S mediated ibrutinib resistance in vitro and in vivo in MYD88 mutated B-cell lymphomas. Blood. 2019;134(Supplement_1):394.

    Google Scholar 

  65. Fouquet G, Gay F, Boyle E, Bringhen S, Larocca A, Facon T, et al. Treatment of newly diagnosed elderly multiple myeloma. Cancer Treat Res. 2016;169:123–43.

  66. Dimopoulos MA, García-Sanz R, Gavriatopoulou M, Morel P, Kyrtsonis M-C, Michalis E, et al. Primary therapy of Waldenström macroglobulinemia (WM) with weekly bortezomib, low-dose dexamethasone, and rituximab (BDR): long-term results of a phase 2 study of the European Myeloma Network (EMN). Blood. 2013;122(19):3276–82.

    CAS  PubMed  Google Scholar 

  67. Gavriatopoulou M, García-Sanz R, Kastritis E, Morel P, Kyrtsonis M-C, Michalis E, et al. BDR in newly diagnosed patients with WM: final analysis of a phase 2 study after a minimum follow-up of 6 years. Blood. 2017;129(4):456–9.

    CAS  PubMed  Google Scholar 

  68. Kapoor P. Another bidder (BDR) revisits. Blood. 2017;129(4):398–400.

    CAS  PubMed  Google Scholar 

  69. Auer RL, Owen RG, D'Sa S, Pratt G, Popova B, Clifton Hadley L, et al. R2W: subcutaneous bortezomib, cyclophosphamide and rituximab (BCR) versus fludarabine, cyclophosphamide and rituximab (FCR) for initial therapy of Waldenstrőm’s macroglobulinemia: a randomised phase II study. Blood. 2016;128(22):618.

    Google Scholar 

  70. Meid K, Dubeau T, Severns P, Gustine J, Ghobrial IM, Castillo JJ, et al. Long-term follow-up of a prospective clinical trial of carfilzomib, rituximab and dexamethasone (CaRD) in Waldenstrom’s macroglobulinemia. Blood. 2017;130(Suppl 1):2772.

    Google Scholar 

  71. Treon SP, Tripsas CK, Meid K, Kanan S, Sheehy P, Chuma S, et al. Carfilzomib, rituximab, and dexamethasone (CaRD) treatment offers a neuropathy-sparing approach for treating Waldenström’s macroglobulinemia. Blood. 2014;124(4):503–10.

    CAS  PubMed  Google Scholar 

  72. Castillo JJ, Meid K, Gustine J, Dubeau T, Severns P, Hunter ZR, et al. Prospective clinical trial of ixazomib, dexamethasone and rituximab as primary therapy in Waldenström macroglobulinemia. Clin Cancer Res. 2018.

  73. Kersten MJ, Minnema M, Vos JM, Nasserinejad K, Kap M. KEGMCMDDTLDJOFB. Ixazomib, rituximab and dexamethasone (IDR) in patients with relapsed or progressive Waldenstrom macroglobulinemia: results of the prospective phase I/II HOVON 124/ECWM-R2 trial. Orlando: ASH; 2019.

    Google Scholar 

  74. Siegel DS, Kaufman JL, Raje NS, Mikhael JR, Kapoor P, Treon SP, et al. Updated results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with Waldenström macroglobulinemia (WM). Blood. 2014;124(21):1715.

    Google Scholar 

  75. Ghobrial IM, Savona MR, Vij R, Siegel DS, Badros A, Kaufman JL, et al. Final results from a multicenter, open-label, dose-escalation phase 1b/2 study of single-agent oprozomib in patients with hematologic malignancies. Blood, 2016;128(22):2110.

    Google Scholar 

  76. Leblond V, Kastritis E, Advani R, Ansell SM, Buske C, Castillo JJ, et al. Treatment recommendations from the Eighth International Workshop on Waldenstrom’s macroglobulinemia. Blood. 2016;128(10):1321–8.

    CAS  PubMed  Google Scholar 

  77. Zanwar S, Abeykoon JP, Kapoor P. Ixazomib: a novel drug for multiple myeloma. Expert Rev Hematol. 2018;11(10):761–71.

    CAS  PubMed  Google Scholar 

  78. Nichols GL, Stein CA. Modulation of the activity of Bcl-2 in Waldenstrom’s macroglobulinemia using antisense oligonucleotides. Semin Oncol. 2003;30(2):297–9.

    CAS  PubMed  Google Scholar 

  79. Cao Y, Yang G, Hunter ZR, Liu X, Xu L, Chen J, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4Wild-type and CXCR4WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015;170(1):134–8.

    CAS  PubMed  Google Scholar 

  80. Castillo JJ, Gustine J, Meid K, Dubeau T, Keezer A, Allan JN, et al. Multicenter prospective phase II study of venetoclax in patients with previously treated Waldenstrom macroglobulinemia. Blood. 2018;132(Supplement 1):2888.

    Google Scholar 

  81. Knittel G, Liedgens P, Korovkina D, Seeger JM, Al-Baldawi Y, Al-Maarri M, et al. B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice. Blood. 2016;127(22):2732–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.

    CAS  PubMed  Google Scholar 

  83. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11(5):329–41.

    CAS  Google Scholar 

  84. Yang G, Liu X, Zhou Y, Xu L, Cao Y, Manning R, et al. PI3K/AKT pathway is activated by MYD88 L265P and use Of PI3K-delta inhibitors induces robust tumor cell killing in Waldenstrom’s macroglobulinemia. Blood. 2013;122(21):4255.

    Google Scholar 

  85. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.

    CAS  PubMed  Google Scholar 

  86. Castillo JJ, Gustine JN, Meid K, Dubeau T, Yang G, Xu L, et al. Idelalisib in Waldenstrom macroglobulinemia: high incidence of hepatotoxicity. Leuk Lymphoma. 2017;58(4):1002–4.

    Google Scholar 

  87. Tomowiak C. Open label non-randomized phase II study exploring “chemo-free” treatment association with idelalisib+ obinutuzumab in patients with relpased/refractory (R/R) Waldenstrom's macroglobulinemia. Orlando: ASH; 2019.

    Google Scholar 

  88. Flinn IW, O'Brien S, Kahl B, Patel M, Oki Y, Foss FF, et al. Duvelisib, a novel oral dual inhibitor of PI3K-delta,gamma, is clinically active in advanced hematologic malignancies. Blood. 2018;131(8):877–87.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kapoor.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Multiple Myeloma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanwar, S., Abeykoon, J.P. & Kapoor, P. Novel Treatment Strategies in the Management of Waldenström Macroglobulinemia. Curr Hematol Malig Rep 15, 31–43 (2020). https://doi.org/10.1007/s11899-020-00559-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-020-00559-4

Keywords

Navigation