Skip to main content
Log in

Current Challenges in Stem Cell Transplantation in Myelofibrosis

  • Myeloproliferative Disorders (C Harrison, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Primary or post-ET/PV myelofibrosis is one of the Philadelphia-negative myeloproliferative neoplasms with worst survival. Allogeneic stem cell transplantation (ASCT) can cure a substantial number of patients but is still not universally applicable due to toxicity which leads to therapy-related morbidity and mortality. In the more recent years, outcome of ASCT has improved by less toxic conditioning regimens and optimization of relapse prevention strategies. The introduction of novel therapies such as JAK2 inhibitors may also be helpful in preparation of the transplant by reducing spleen size and constitutional symptoms. To reduce the risk of relapse, molecular monitoring and adoptive immunotherapy with donor lymphocytes have been introduced. Despite lacking prospective randomized trials, it is justified to offer ASCT to eligible patients with PMF whose median survival is expected to be less than 5 years. This includes patients with intermediate-2 and high risk according to IPSS or DIPSS, respectively. The benefit/risk ratio should be considered in each patient taking also transplant- and patient-specific factors into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gupta V, Hari P, Hoffmann R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood. 2012;120:1367–79.

    Article  CAS  PubMed  Google Scholar 

  2. Dokal I, Jones L, Deebnanode M, et al. Allogeneic bone marrow transplantation for primary myelofibrosis. Br J Haematol. 1989;71:158–60.

    Article  CAS  PubMed  Google Scholar 

  3. Creemers GJ, Lowenberg B, Hagenbeek A. Allogeneic bone marrow transplantation for primary myelofibrosis. Br J Haematol. 1992;82:772–3.

    Article  CAS  PubMed  Google Scholar 

  4. Guardiola P, Anderson JE, Bandini G, et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Societe Francaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood. 1999;93:2831–8.

    CAS  PubMed  Google Scholar 

  5. Kerbauy DM, Gooley TA, Sale GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13:355–65.

    Article  PubMed  Google Scholar 

  6. Kerbauy HJ, Gooley TA, Flowers ME, et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood. 2003;102:3912–8.

    Article  Google Scholar 

  7. Daly A, Song K, Nevill T, et al. Stem cell transplantation for myelofibrosis: a report from two Canadian centers. Bone Marrow Transplant. 2003;32:35–40.

    Article  CAS  PubMed  Google Scholar 

  8. Byrne JL, Beshti H, Clark D, et al. Induction of remission after donor leucocyte infusion for the treatment of relapsed chronic idiopathic myelofibrosis following allogeneic transplantation: evidence for a ‘graft vs. myelofibrosis’ effect. Br J Haematol. 2000;108:430–3.

    Article  CAS  PubMed  Google Scholar 

  9. Cervantes F, Rovira M, Urbano-Ispizua A, et al. Complete remission of idiopathic myelofibrosis following donor lymphocyte infusion after failure of allogeneic transplantation: demonstration of a graft-versus-myelofibrosis effect. Bone Marrow Transplant. 2000;26:697–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hessling J, Kröger N, Werner M, et al. Dose-reduced conditioning regimen followed by allogeneic stem cell transplantation in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;119:769–72.

    Article  PubMed  Google Scholar 

  11. Devine SM, Hoffman R, Verma A, et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia. Blood. 2002;99:2255–8.

    Article  CAS  PubMed  Google Scholar 

  12. Rondelli D, Barosi G, Bacigalupo A, et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood. 2005;105:4115–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kröger N, Zabelina T, Schieder H, et al. Pilot study of reduced-intensity conditioning followed by allogeneic stem cell transplantation from related and unrelated donors in patients with myelofibrosis. Br J Haematol. 2005;128:690–7.

    Article  PubMed  Google Scholar 

  14. Kröger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114:5264–70.

    Article  PubMed  Google Scholar 

  15. Alchalby H, Zabelina T, Wollf D, et al. Long term follow-up of the prospective multicenter study of reduced-intensity allogeneic stem cell transplantation for primary or post ET/PV Myelofibrosis. Blood ASH Annual Meeting Abstracts 2011;118:1019

  16. Rondelli D, Goldberg JD, Isola L, et al. MPD-RC 101 prospective study of reduced-intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124:1183–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Bacigalupo A, Soraru M, Dominietto A, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen, and donor type. Bone Marrow Transplant. 2010;45:458–63.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta V, Malone AK, Hari PN, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2014;20:89–97.

    Article  PubMed  Google Scholar 

  19. Stewart WA, Pearce R, Kirkland KE, et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant. 2010;45:1587–93.

    Article  CAS  PubMed  Google Scholar 

  20. Ballen KK, Shrestha A, Sobocinski KA, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2010;16:358–67.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Robin M, Tabrizi R, Mohty M, et al. Allogeneic haematopoietic stem cell transplantation for myelofibrosis: a report of the Société Franҁaise de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC). Br J Haematol. 2011;152:331–9.

    Article  PubMed  Google Scholar 

  22. Gupta V, Kröger N, Aschan J, et al. A retrospective comparison of conventional intensity conditioning and reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in myelofibrosis. Bone Marrow Transplant. 2009;44:317–20.

    Article  CAS  PubMed  Google Scholar 

  23. Abelsson J, Merup M, Birgegard G, et al. The outcome of allo-HSCT for 92 patients with myelofibrosis in the Nordic countries. Bone Marrow Transplant. 2012;47:380–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ditschkowski M, Elmaagacli AH, Trenschel R, et al. Dynamic International Prognostic Scoring System scores, pre-transplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica. 2012;97:1574–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Scott BL, Gooley TA, Sorror ML, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood. 2012;119:2657–64. Retrospective study confirming the utility of DIPSS on outcome after allogeneic stem cell transplantation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Nivison-Smith I, Dodds AJ, Butler J, et al. Allgeneic hematopoietic cell transplantation for chronic myelofibrosis in Australia and New Zealand: older recipients receiving myeloablative conditioning at increased mortality risk. Biol Blood Marrow Transplant. 2012;18:302–8.

    Article  PubMed  Google Scholar 

  27. Patriarca F, Bacigalupo A, Sperotto A, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008;93:1514–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kröger N, Ditschkowski M, Scott BL, et al. Impact of conditioning regimen, donor source, and DIPSS score on outcome of allogeneic stem cell transplantation for myelofibrosis. Blood. 2013;122:712.

    Article  Google Scholar 

  29. Alchalby H, Badbaran A, Zabelina T, et al. Impact of JAK2V617F mutation status, allele burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood. 2010;116:3572–81.

    Article  CAS  PubMed  Google Scholar 

  30. Lange T, Edelmann A, Siebolts U, et al. JAK2V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica. 2013;98:722–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Alchalby H, Badbaran A, Bock O, et al. Screening and monitoring of MPL W515L mutation with real-time PCR in patients with myelofibrosis undergoing allogeneic-SCT. Bone Marrow Transplant. 2010;45:1404–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kröger N, Alchalby H, Klyuchnnikov E, et al. JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. Blood. 2009;113:1866–8.

    Article  PubMed  Google Scholar 

  33. Vainchenker W, Delhommeau F, Constantinescu SN, et al. New mutations of myeloproliferative neoplasms. Blood. 2011;118:1723–35.

    Article  CAS  PubMed  Google Scholar 

  34. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. One of the first papers describing first the detection of calreticulin mutation in JAK2V617F negative patients.

    Article  CAS  PubMed  Google Scholar 

  35. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. One of the first papers describing first the detection of calreticulin mutation in JAK2V617F negative patients.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Panagiota V, Thol F, Markus B, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic stem cell transplantation. Leukemia. 2014;28:1552–5.

    Article  CAS  PubMed  Google Scholar 

  37. Tefferi A, Constantinescu SN. Introduction to ‘A special spotlight review series on BCR-ABL-negative myeloproliferative neoplasms’. Leukemia. 2008;22:3–13.

    Article  CAS  PubMed  Google Scholar 

  38. Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342:1255–66.

    Article  CAS  PubMed  Google Scholar 

  39. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.

    Article  CAS  PubMed  Google Scholar 

  40. Le Bousse-Kerdilès MC, Martyré MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Netw. 2008;19:69–80.

    PubMed  Google Scholar 

  41. Thiele J, Kvasnicka HM, Dietrich H, et al. Dynamics of bone marrow changes in patients with chronic idiopathic myelofibrosis following allogeneic stem cell transplantation. Histol Histopathol. 2005;20:879–89.

    CAS  PubMed  Google Scholar 

  42. Kröger N, Thiele J, Zander A, et al. MDS-Subcommittee of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation. Rapid regression of bone marrow fibrosis after dose-reduced allogeneic stem cell transplantation in patients with primary myelofibrosis. Exp Hematol. 2007;35:1719–22.

    Article  PubMed  Google Scholar 

  43. Kröger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20:812–5.

    Article  PubMed  Google Scholar 

  44. Sale GE, Deeg HJ, Porter BA. Regression of myelofibrosis and osteosclerosis following hematopoietic cell transplantation assessed by magnetic resonance imaging and histologic grading. Biol Blood Marrow Transplant. 2006;12:1285–94.

    Article  PubMed  Google Scholar 

  45. Derlin T, Büsche G, Kröger N. Diagnostic value of 18F-FDG-PET/CT for monitoring myelofibrosis after allogeneic stem cell transplantation. Nucl Med Rev Cent East Eur. 2015;18:65–36.

    Article  Google Scholar 

  46. Derlin T, Alchalby H, Bannas P, et al. Assessment of bone marrow inflammation in patients with myelofibrosis: an (18)F-fluorodeoxyglucose PET/CT study. Eur J Nucl Med Mol Imaging. 2015;42:696–705.

    Article  CAS  PubMed  Google Scholar 

  47. Robin M, Giannotti F, Deconinck E, et al. Unrelated cord blood transplantation for patients with primary or secondary myelofibrosis. Biol Blood Marrow Transplant. 2014;20:1841–6.

    Article  PubMed  Google Scholar 

  48. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14:641–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.

    Article  CAS  PubMed  Google Scholar 

  50. Caramazza D, Begna KH, Gangat N, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25:82–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Tefferi A, Siragusa S, Hussein K, et al. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis—prognostic relevance is independent of IPSS or karyotype. Am J Hematol. 2010;85:14–7.

    Article  PubMed  Google Scholar 

  52. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    Article  PubMed  Google Scholar 

  53. Guglielmelli P, Lasho TL, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28:1804–10.

    Article  CAS  PubMed  Google Scholar 

  54. Alchalby H, Yunus DR, Zabelina T, et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol. 2012;157:75–85.

    Article  PubMed  Google Scholar 

  55. Kröger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years with primary myelofibrosis. Blood. 2015;125(21):3347–50. Retrospective comparison between allogeneic SCT and conventional therapy supporting non-transplant approaches for low risk DIPSS patients and transplantation for DIPSS intermediate-2 and high risk patients with PMF.

    Article  PubMed  Google Scholar 

  56. Barbui T, Barosi G, Birgegaard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: Critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.

    Article  PubMed  Google Scholar 

  57. Sorror ML, Storb RF, Sandmaier BM, et al. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56. Useful score to evaluate comorbidities before allogeneic stem cell transplantation.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mesa R, Nagorney DS, Schwager S, Allred J, Tefferi A. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107:361–70.

    Article  PubMed  Google Scholar 

  59. Ito T, Akagi K, Kondo T, Kawabata H, Ichinohe T, Takaori-Kondo A. Splenic irradiation as a component of a reduced-intensity conditioning regimen for hematopoietic stem cell transplantation in myelofibrosis with massive splenomegaly. Tohoku J Exp Med. 2012;228:295–9.

    Article  PubMed  Google Scholar 

  60. Akpek G, Pasquini MC, Logan B, et al. Effects of spleen status on early outcomes after hematopoietic cell transplantation. Bone Marrow Transplant. 2013;48:825–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Robin M, Espérou H, de Latour RP, et al. Splenectomy after allogeneic haematopoietic stem cell transplantation in patients with myelofibrosis. Br J Haematol. 2010;15:721–4.

    Article  Google Scholar 

  62. Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. One of the two randomized studies showing superiority of JAK inhibitor ruxolitinib to best supportive care regarding reduction of spleen size.

    Article  CAS  PubMed  Google Scholar 

  63. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. One of the two randomized studies showing superiority of JAK inhibitor ruxolitinib to best supportive care regarding reduction of spleen size.

    Article  CAS  PubMed  Google Scholar 

  64. Ciurea SO, Sadegi B, Wilbur A, et al. Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced-intensity allogeneic stem cell transplantation. Br J Haematol. 2008;141:80–3.

    Article  PubMed  Google Scholar 

  65. Stübig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28:1736–8.

    Article  PubMed  Google Scholar 

  66. Spoerl S, Mathew NR, Bscheider M, et al. Activity of therapeutic JAK1/2 blockade in graft-versus-host disease. Blood. 2014;123:3832–42.

    Article  CAS  PubMed  Google Scholar 

  67. Parampalli Yajnanarayana S, Stübig T, Cornez I, et al. JAK1/2 inhibition impairs T cell function in vitro and in patients with myeloproliferative neoplasms. Br J Haematol. 2015. doi:10.1111/bjh.13373.

    PubMed  Google Scholar 

  68. Heine A, Held SA, Daecke SN, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122:1192–202.

    Article  CAS  PubMed  Google Scholar 

  69. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49:179–84.

    Article  CAS  PubMed  Google Scholar 

  70. Shanavas M, Messner HA, Atenafu EG, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis using fludarabine-, intravenous busulfan-, and low-dose TBI-based conditioning. Bone Marrow Transplant. 2014;49:1162–9.

    Article  CAS  PubMed  Google Scholar 

  71. Robin M, Francois S, Huynh A, et al. Ruxolitinib before allogeneic hematopoietic stem cell transplantation (HSCT) in patients with myelofibrosis: a preliminary descriptive report of the JAK ALLO study, a phase II trial sponsored by Goelams-FIM in collaboration with the SFGM-TC. Blood 2013; 122:abstract 306

  72. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of allogeneic hematopoietic cell transplantation (HCT) in patients with myelofibrosis (MF) exposed to JAK1/2 inhibitors. EHA abstract 2015;#450.

  73. Klyuchnikov E, El-Cheikh J, Sputtek A, et al. CD34(+)-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol Blood Marrow Transplant. 2014;20:382–6.

    Article  CAS  PubMed  Google Scholar 

  74. Abdulkarim K, Girodon F, Johansson P, et al. AML transformation in 56 patients with Ph-MPD in two well defined populations. Eur J Haematol. 2009;82:106–11.

    Article  PubMed  Google Scholar 

  75. Mesa RA, Li CY, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood. 2005;105:973–7.

    Article  CAS  PubMed  Google Scholar 

  76. Alchalby H, Zabelina T, Stübig T, et al. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the Eropean Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20:279–87.

    Article  PubMed  Google Scholar 

  77. Ciurea SO, de Lima M, Giralt S, et al. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation. Biol Blood Marrow Transplant. 2010;16:555–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lussana F, Rambaldi A, Finazzi MC, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2014;99:916–21.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Klyuchnikov E, Holler E, Bornhäuser M, et al. Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. Br J Haematol. 2012;159:172–81.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Nicolaus Kröger declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolaus Kröger.

Additional information

This article is part of the Topical Collection on Myeloproliferative Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kröger, N. Current Challenges in Stem Cell Transplantation in Myelofibrosis. Curr Hematol Malig Rep 10, 344–350 (2015). https://doi.org/10.1007/s11899-015-0279-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0279-9

Keywords

Navigation