Skip to main content

Advertisement

Log in

Management of Advanced-Phase Chronic Myeloid Leukemia

  • Chronic Myeloid Leukemias (E Jabbour, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The management of chronic myeloid leukemia (CML) in accelerated or blast phase (advanced phase) remains a significant challenge despite the introduction of very effective tyrosine kinase inhibitors (TKIs). The biology of advanced-phase CML is complex and engages several pathways that are not optimally targeted by TKIs. Allogeneic stem cell transplantation remains the only potentially curative therapy, but the effectiveness of this conventional approach is limited. New strategies are required to improve the outlook for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bjorkholm M et al. Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008. J Clin Oncol. 2011;29(18):2514–20.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kantarjian H et al. Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: a single-institution historical experience. Blood. 2012;119(9):1981–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hehlmann R. How I treat CML blast crisis. Blood. 2012;120(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  4. Druker BJ et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  5. Sokal JE. Evaluation of survival data for chronic myelocytic leukemia. Am J Hematol. 1976;1(4):493–500.

    Article  CAS  PubMed  Google Scholar 

  6. Saglio G et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kantarjian H et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70.

    Article  CAS  PubMed  Google Scholar 

  8. Vardiman JW MJ, Baccarani M, Thiele J. Chronic myelogenous leukemia BCR-ABL1 positive. In: Swerdlow SH CE, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, editors. WHO classification of tumours of haematopotietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  9. Baccarani M et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. Updated recommendations of the European LeukemiaNet regarding the management of chronic myeloid leukemia, including accelerated and blast phases.

    Article  CAS  PubMed  Google Scholar 

  10. Cortes JE et al. Staging of chronic myeloid leukemia in the imatinib era: an evaluation of the World Health Organization proposal. Cancer. 2006;106(6):1306–15.

    Article  CAS  PubMed  Google Scholar 

  11. Baccarani M, Dreyling M. Chronic myeloid leukaemia: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v165–7.

    Article  PubMed  Google Scholar 

  12. Jabbour EJ, et al. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia. Leuk Lymphoma, 2013.

  13. Shtivelman E et al. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986;47(2):277–84.

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Neriah Y et al. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–4.

    Article  CAS  PubMed  Google Scholar 

  15. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004;103(11):4010–22.

    Article  CAS  PubMed  Google Scholar 

  16. Deutsch E et al. BCR-ABL down-regulates the DNA repair protein DNA-PKcs. Blood. 2001;97(7):2084–90.

    Article  CAS  PubMed  Google Scholar 

  17. O’Dwyer ME et al. The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood. 2002;100(5):1628–33.

    Article  PubMed  Google Scholar 

  18. O’Dwyer ME et al. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood. 2004;103(2):451–5.

    Article  PubMed  Google Scholar 

  19. Radich JP, The biology of CML blast crisis. Hematol Am Soc Hematol Educ Program. 2007:384–91.

  20. Pierson BA, Miller JS. CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis. Blood. 1996;88(6):2279–87.

    CAS  PubMed  Google Scholar 

  21. Skorski T et al. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci U S A. 1996;93(23):13137–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Koptyra M et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108(1):319–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ilaria RL, Jr. Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematol Am Soc Hematol Educ Program. 2005:188–94.

  24. Zhao C et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12(6):528–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhao C et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Jamieson CH et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351(7):657–67.

    Article  CAS  PubMed  Google Scholar 

  27. Crews LA, Jamieson CH. Chronic myeloid leukemia stem cell biology. Curr Hematol Malig Rep. 2012;7(2):125–32.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kantarjian HM et al. Treatment of Philadelphia chromosome-positive, accelerated-phase chronic myelogenous leukemia with imatinib mesylate. Clin Cancer Res. 2002;8(7):2167–76.

    CAS  PubMed  Google Scholar 

  29. Guilhot F et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood. 2007;109(10):4143–50.

    Article  CAS  PubMed  Google Scholar 

  30. le Coutre P et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008;111(4):1834–9.

    Article  PubMed  Google Scholar 

  31. Saglio G et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study: efficacy and tolerability of 140 milligrams once daily and 70 milligrams twice daily. Cancer. 2010;116(16):3852–61.

    Article  CAS  PubMed  Google Scholar 

  32. Cortes JE et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. A multicenter, phase 2 trial demonstrating activity of ponatinib in Philadelphia-chromosome positive leukemias across all ABL1 domain mutations.

    Article  CAS  PubMed  Google Scholar 

  33. Talpaz M et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002;99(6):1928–37.

    Article  CAS  PubMed  Google Scholar 

  34. Palandri F et al. The long-term durability of cytogenetic responses in patients with accelerated phase chronic myeloid leukemia treated with imatinib 600 mg: the GIMEMA CML Working Party experience after a 7-year follow-up. Haematologica. 2009;94(2):205–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rea D et al. First-line imatinib mesylate in patients with newly diagnosed accelerated phase-chronic myeloid leukemia. Leukemia. 2012;26(10):2254–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ohanian M et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma Myeloma Leuk. 2014;14(2):155–162 e1.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kantarjian H et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood. 2009;113(25):6322–9.

    Article  CAS  PubMed  Google Scholar 

  38. Apperley JF et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START a trial. J Clin Oncol. 2009;27(21):3472–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kantarjian H et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    Article  PubMed  Google Scholar 

  40. Nicolini FE et al. Expanding Nilotinib Access in Clinical Trials (ENACT), an open-label multicenter study of oral nilotinib in adult patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase or blast crisis. Leuk Lymphoma. 2012;53(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  41. le Coutre PD et al. Nilotinib in patients with Ph+chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia. 2012;26(6):1189–94.

    Article  PubMed  Google Scholar 

  42. Bosulif (bosutinib) [prescribing information] (2012) New York, NY: Pfizer Laboratories.

  43. Soverini S et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114(10):2168–71.

    Article  CAS  PubMed  Google Scholar 

  44. Redaelli S et al. Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol. 2012;87(11):E125–8.

    Article  CAS  PubMed  Google Scholar 

  45. Druker BJ et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–42.

    Article  CAS  PubMed  Google Scholar 

  46. Kantarjian HM et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood. 2002;99(10):3547–53.

    Article  CAS  PubMed  Google Scholar 

  47. Sawyers CL et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99(10):3530–9.

    Article  CAS  PubMed  Google Scholar 

  48. Sureda A et al. Imatinib mesylate as treatment for blastic transformation of Philadelphia chromosome positive chronic myelogenous leukemia. Haematologica. 2003;88(11):1213–20.

    CAS  PubMed  Google Scholar 

  49. Palandri F et al. Chronic myeloid leukemia in blast crisis treated with imatinib 600 mg: outcome of the patients alive after a 6-year follow-up. Haematologica. 2008;93(12):1792–6.

    Article  CAS  PubMed  Google Scholar 

  50. Cortes J et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13.

    Article  CAS  PubMed  Google Scholar 

  51. Cortes J et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia. 2008;22(12):2176–83.

    Article  CAS  PubMed  Google Scholar 

  52. Strati P et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014;120(3):373–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kantarjian HM et al. Treatment of chronic myelogenous leukemia in accelerated and blastic phases with daunorubicin, high-dose cytarabine, and granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 1992;10(3):398–405.

    CAS  PubMed  Google Scholar 

  54. Sacchi S et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer. 1999;86(12):2632–41.

    Article  CAS  PubMed  Google Scholar 

  55. Porkka K et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood. 2008;112(4):1005–12.

    Article  CAS  PubMed  Google Scholar 

  56. Mustjoki S et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405.

    Article  CAS  PubMed  Google Scholar 

  57. Khoury HJ, et al. Omacetaxine mepesuccinate in patients with advanced chronic myeloid leukemia with resistance or intolerance to tyrosine kinase inhibitors. Leuk Lymphoma. 2014.

  58. Pavlu J et al. Three decades of transplantation for chronic myeloid leukemia: what have we learned? Blood. 2011;117(3):755–63.

    Article  CAS  PubMed  Google Scholar 

  59. Gragert L et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371(4):339–48.

    Article  CAS  PubMed  Google Scholar 

  60. Sanz GF et al. Unrelated donor cord blood transplantation in adults with chronic myelogenous leukemia: results in nine patients from a single institution. Bone Marrow Transplant. 2001;27(7):693–701.

    Article  CAS  PubMed  Google Scholar 

  61. Sanz J et al. Single-unit umbilical cord blood transplantation from unrelated donors in adult patients with chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2010;16(11):1589–95.

    Article  PubMed  Google Scholar 

  62. Xiao-Jun H et al. HLA-mismatched/haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for chronic myeloid leukemia: improved outcomes in patients in accelerated phase and blast crisis phase. Ann Med. 2008;40(6):444–55.

    Article  PubMed  Google Scholar 

  63. O'Donnell PV et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86.

    Article  PubMed  Google Scholar 

  64. Luznik L et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Bashey A et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31(10):1310–6.

    Article  CAS  PubMed  Google Scholar 

  66. Anasetti C et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367(16):1487–96.

    Article  CAS  PubMed  Google Scholar 

  67. Oehler VG et al. Randomized trial of allogeneic related bone marrow transplantation versus peripheral blood stem cell transplantation for chronic myeloid leukemia. Biol Blood Marrow Transplant. 2005;11(2):85–92.

    Article  PubMed  Google Scholar 

  68. Biggs JC et al. Treatment of chronic myeloid leukemia with allogeneic bone marrow transplantation after preparation with BuCy2. Blood. 1992;80(5):1352–7.

    CAS  PubMed  Google Scholar 

  69. Radich JP et al. HLA-matched related hematopoietic cell transplantation for chronic-phase CML using a targeted busulfan and cyclophosphamide preparative regimen. Blood. 2003;102(1):31–5.

    Article  CAS  PubMed  Google Scholar 

  70. Copelan EA et al. Late mortality and relapse following BuCy2 and HLA-identical sibling marrow transplantation for chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2009;15(7):851–5.

    Article  CAS  PubMed  Google Scholar 

  71. Crawley C et al. Outcomes of reduced-intensity transplantation for chronic myeloid leukemia: an analysis of prognostic factors from the Chronic Leukemia Working Party of the EBMT. Blood. 2005;106(9):2969–76.

    Article  CAS  PubMed  Google Scholar 

  72. Kerbauy FR et al. Hematopoietic cell transplantation from HLA-identical sibling donors after low-dose radiation-based conditioning for treatment of CML. Leukemia. 2005;19(6):990–7.

    Article  CAS  PubMed  Google Scholar 

  73. Khoury H et al. Low incidence of transplantation-related acute complications in patients with chronic myeloid leukemia undergoing allogeneic stem cell transplantation with a low-dose (550 cGy) total body irradiation conditioning regimen. Biol Blood Marrow Transplant. 2001;7(6):352–8.

    Article  CAS  PubMed  Google Scholar 

  74. Warlick E et al. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era. Blood. 2012;119(17):4083–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Saussele S et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115(10):1880–5.

    Article  CAS  PubMed  Google Scholar 

  76. Khoury HJ et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era: a CIBMTR analysis. Bone Marrow Transplant. 2012;47(6):810–6. A CIBMTR review of prognostic factors for patients with advanced phase CML undergoing allogeneic hematopoietic stem cell transplantation.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Klyuchnikov E et al. Current status and perspectives of tyrosine kinase inhibitor treatment in the posttransplant period in patients with chronic myelogenous leukemia (CML). Biol Blood Marrow Transplant. 2010;16(3):301–10.

    Article  CAS  PubMed  Google Scholar 

  78. Carpenter PA et al. Prophylactic administration of imatinib after hematopoietic cell transplantation for high-risk Philadelphia chromosome-positive leukemia. Blood. 2007;109(7):2791–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Olavarria E et al. Posttransplantation imatinib as a strategy to postpone the requirement for immunotherapy in patients undergoing reduced-intensity allografts for chronic myeloid leukemia. Blood. 2007;110(13):4614–7.

    Article  CAS  PubMed  Google Scholar 

  80. Kantarjian HM et al. Imatinib mesylate therapy for relapse after allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood. 2002;100(5):1590–5.

    CAS  PubMed  Google Scholar 

  81. Olavarria E et al. Response to imatinib in patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Leukemia. 2003;17(9):1707–12.

    Article  CAS  PubMed  Google Scholar 

  82. Wright MP et al. Response to tyrosine kinase inhibitor therapy in patients with chronic myelogenous leukemia relapsing in chronic and advanced phase following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16(5):639–46.

    Article  CAS  PubMed  Google Scholar 

  83. Hess G et al. Sustained complete molecular remissions after treatment with imatinib-mesylate in patients with failure after allogeneic stem cell transplantation for chronic myelogenous leukemia: results of a prospective phase II open-label multicenter study. J Clin Oncol. 2005;23(30):7583–93.

    Article  CAS  PubMed  Google Scholar 

  84. Kaeda J et al. Serial measurement of BCR-ABL transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood. 2006;107(10):4171–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kolb HJ et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86(5):2041–50.

    CAS  PubMed  Google Scholar 

  86. Dazzi F et al. Durability of responses following donor lymphocyte infusions for patients who relapse after allogeneic stem cell transplantation for chronic myeloid leukemia. Blood. 2000;96(8):2712–6.

    CAS  PubMed  Google Scholar 

  87. Collins Jr RH et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15(2):433–44.

    PubMed  Google Scholar 

  88. Chalandon, Y., et al. Early administration of donor lymphocyte infusions upon molecular relapse after allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia: a study by the Chronic Malignancies Working Party of the EBMT. Haematologica, 2014. EBMT evaluation of DLI in which there appeared to be no advantage from administering it early upon detection of molecular relapse in patients following allogeneic stem cell transplantation for chronic myeloid leukemia.

  89. Guglielmi C et al. Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood. 2002;100(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  90. Porter DL et al. Long-term follow-up of patients who achieved complete remission after donor leukocyte infusions. Biol Blood Marrow Transplant. 1999;5(4):253–61.

    Article  CAS  PubMed  Google Scholar 

  91. Savani BN et al. Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant. 2005;36(11):1009–15.

    Article  CAS  PubMed  Google Scholar 

  92. Marin D et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  93. Branford S et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  94. Lima L et al. Peripheral blood monitoring of chronic myeloid leukemia during treatment with imatinib, second-line agents, and beyond. Cancer. 2011;117(6):1245–52.

    Article  CAS  PubMed  Google Scholar 

  95. Shah NP et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  96. Zabriskie MS et al. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia. Cancer Cell. 2014;26(3):428–42.

    Article  CAS  PubMed  Google Scholar 

  97. Cortes JE et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118(17):4567–76.

    Article  CAS  PubMed  Google Scholar 

  98. Khoury HJ et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–12.

    Article  CAS  PubMed  Google Scholar 

  99. Khoury HJ et al. Analysis of the cardiovascular risk profile of Ph+leukemia patients treated with ponatinib. ASCO Annu Meet Proc. 2013;31(15\_suppl):7048.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Zachariah DeFilipp declares no potential conflicts of interest.

Dr. Hanna Jean Khoury reports non-financial support from BMS, personal fees from ARIAD, personal fees from Pfizer, and non-financial support from Teva.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Jean Khoury.

Additional information

This article is part of the Topical Collection on Chronic Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeFilipp, Z., Khoury, H.J. Management of Advanced-Phase Chronic Myeloid Leukemia. Curr Hematol Malig Rep 10, 173–181 (2015). https://doi.org/10.1007/s11899-015-0249-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0249-2

Keywords

Navigation