Skip to main content
Log in

Genetic Basis of MPN: Beyond JAK2-V617F

  • Myeloproliferative Disorders (JJ Kiladjian, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The clonal blood disorders polycythemia vera, essential thrombocythemia and primary myelofibrosis belong to the BCR-ABL1-negative myeloproliferative neoplasms and are specified by increased production of terminally differentiated myeloid cells. Clonal evolution, disease initiation and progression are influenced by genetic alterations, often affecting cytokine signaling and gene expression. This review outlines somatic changes discovered in myeloproliferative neoplasms and how these genetic aberrations influence the pathogenesis of myeloproliferative neoplasms. Furthermore, genetic responses to drug treatments in myeloproliferative neoplasms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  PubMed  CAS  Google Scholar 

  2. Mesa RA, Li CY, Ketterling RP, et al. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood. 2005;105:973–7.

    Article  PubMed  CAS  Google Scholar 

  3. Crisa E, Venturino E, Passera R, et al. A retrospective study on 226 polycythemia vera patients: impact of median hematocrit value on clinical outcomes and survival improvement with anti-thrombotic prophylaxis and non-alkylating drugs. Ann Hematol. 2010;89:691–9.

    Article  PubMed  Google Scholar 

  4. Barbui T, Thiele J, Passamonti F, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29:3179–84.

    Article  PubMed  Google Scholar 

  5. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol. 2011;29:573–82.

    Article  PubMed  CAS  Google Scholar 

  6. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    PubMed  CAS  Google Scholar 

  7. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  PubMed  CAS  Google Scholar 

  8. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  PubMed  CAS  Google Scholar 

  9. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  PubMed  CAS  Google Scholar 

  10. Plo I, Vainchenker W. Molecular and genetic bases of myeloproliferative disorders: questions and perspectives. Clin Lymphoma Myeloma. 2009;9 Suppl 3:S329–39.

    Article  PubMed  CAS  Google Scholar 

  11. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277:47954–63.

    Article  PubMed  CAS  Google Scholar 

  12. Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 2001;14:27–37.

    Article  PubMed  CAS  Google Scholar 

  13. Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci U S A. 2005;102:18962–7.

    Article  PubMed  CAS  Google Scholar 

  14. Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene. 2007;26:6724–37.

    Article  PubMed  CAS  Google Scholar 

  15. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.

    Article  PubMed  CAS  Google Scholar 

  16. Dawson MA, Bannister AJ, Gottgens B, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009;461:819–22.

    Article  PubMed  CAS  Google Scholar 

  17. Liu F, Zhao X, Perna F, et al. JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation. Cancer Cell. 2011;19:283–94.

    Article  PubMed  CAS  Google Scholar 

  18. Li J, Kent DG, Chen E, Green AR. Mouse models of myeloproliferative neoplasms: JAK of all grades. Dis Model Mech. 2011;4:311–7.

    Article  PubMed  CAS  Google Scholar 

  19. Nicola NA, Metcalf D, Matsumoto M, Johnson GR. Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J Biol Chem. 1983;258:9017–23.

    PubMed  CAS  Google Scholar 

  20. Jelkmann W. Regulation of erythropoietin production. J Physiol. 2011;589:1251–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kaushansky K, Lok S, Holly RD, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994;369:568–71.

    Article  PubMed  CAS  Google Scholar 

  22. Fishley B, Alexander WS. Thrombopoietin signalling in physiology and disease. Growth Factors. 2004;22:151–5.

    Article  PubMed  CAS  Google Scholar 

  23. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.

    Article  PubMed  CAS  Google Scholar 

  24. Pietra D, Brisci A, Rumi E, et al. Deep sequencing reveals double mutations in cis of MPL exon 10 in myeloproliferative neoplasms. Haematologica. 2011;96:607–11.

    Article  PubMed  CAS  Google Scholar 

  25. Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 2005;105:4604–12.

    Article  PubMed  CAS  Google Scholar 

  26. Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med. 2004;200:569–80.

    Article  PubMed  Google Scholar 

  27. Oh ST, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116:988–92.

    Article  PubMed  CAS  Google Scholar 

  28. Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363:1189–90.

    Article  PubMed  CAS  Google Scholar 

  29. Krebs DL, Hilton DJ. SOCS: physiological suppressors of cytokine signaling. J Cell Sci. 2000;113(Pt 16):2813–9.

    PubMed  CAS  Google Scholar 

  30. Jost E, do ON, Dahl E, et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia. 2007;21:505–10.

    Article  PubMed  CAS  Google Scholar 

  31. Teofili L, Martini M, Cenci T, et al. Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer. 2008;123:1586–92.

    Article  PubMed  CAS  Google Scholar 

  32. Suessmuth Y, Elliott J, Percy MJ, et al. A new polycythaemia vera-associated SOCS3 SH2 mutant (SOCS3F136L) cannot regulate erythropoietin responses. Br J Haematol. 2009;147:450–8.

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005;6:907–18.

    Article  PubMed  CAS  Google Scholar 

  34. Saur SJ, Sangkhae V, Geddis AE, et al. Ubiquitination and degradation of the thrombopoietin receptor c-Mpl. Blood. 2010;115:1254–63.

    Article  PubMed  CAS  Google Scholar 

  35. Grand FH, Hidalgo-Curtis CE, Ernst T, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92.

    Article  PubMed  CAS  Google Scholar 

  36. Dunbar AJ, Gondek LP, O'Keefe CL, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 2008;68:10349–57.

    Article  PubMed  CAS  Google Scholar 

  37. Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    Article  PubMed  CAS  Google Scholar 

  38. Stegelmann F, Bullinger L, Griesshammer M, et al. High-resolution single-nucleotide polymorphism array-profiling in myeloproliferative neoplasms identifies novel genomic aberrations. Haematologica. 2010;95:666–9.

    Article  PubMed  CAS  Google Scholar 

  39. • Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–9. This study reported mutations of genes involved in RNA splicing in diverse myeloid malignancies.

    Article  PubMed  CAS  Google Scholar 

  40. •• Klampfl T, Harutyunyan A, Berg T, et al. Genome integrity of myeloproliferative neoplasms in chronic phase and during disease progression. Blood. 2011;118:167–76. Investigation of chromosomal aberrations in MPN that identified commonly affected chromosomal regions and lesions that associated with disease progression.

    Article  PubMed  CAS  Google Scholar 

  41. Jager R, Gisslinger H, Passamonti F, et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms. Leukemia. 2010;24:1290–8.

    Article  PubMed  CAS  Google Scholar 

  42. Georgopoulos K. Haematopoietic cell-fate decisions, chromatin regulation and ikaros. Nat Rev Immunol. 2002;2:162–74.

    Article  PubMed  CAS  Google Scholar 

  43. Kano G, Morimoto A, Takanashi M, et al. Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels. Leuk Lymphoma. 2008;49:965–73.

    Article  PubMed  CAS  Google Scholar 

  44. Banham AH, Beasley N, Campo E, et al. The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 2001;61:8820–9.

    PubMed  CAS  Google Scholar 

  45. Odero MD, Carlson K, Calasanz MJ, et al. Identification of new translocations involving ETV6 in hematologic malignancies by fluorescence in situ hybridization and spectral karyotyping. Gene Chromosome Cancer. 2001;31:134–42.

    Article  CAS  Google Scholar 

  46. Bohlander SK. ETV6: a versatile player in leukemogenesis. Semin Cancer Biol. 2005;15:162–74.

    Article  PubMed  CAS  Google Scholar 

  47. Truscott M, Harada R, Vadnais C, et al. p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol. 2008;28:3127–38.

    Article  PubMed  CAS  Google Scholar 

  48. Vadnais C, Davoudi S, Afshin M, et al. CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage. Nucleic Acids Res. 2012;40:4483–95.

    Article  PubMed  CAS  Google Scholar 

  49. Cadieux C, Fournier S, Peterson AC, et al. Transgenic mice expressing the p75 CCAAT-displacement protein/Cut homeobox isoform develop a myeloproliferative disease-like myeloid leukemia. Cancer Res. 2006;66:9492–501.

    Article  PubMed  CAS  Google Scholar 

  50. Harada H, Harada Y, Niimi H, et al. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood. 2004;103:2316–24.

    Article  PubMed  CAS  Google Scholar 

  51. • Milosevic JD, Puda A, Malcovati L, et al. Clinical significance of genetic aberrations in secondary acute myeloid leukemia. Am J Hematol. 2012;87:1010–6. This study compared genetic aberrations occurring in secondary and de novo AML and identified mutant TP53 as an independent adverse prognostic factor for overall survival in secondary AML.

    Article  PubMed  CAS  Google Scholar 

  52. • Jutzi JS, Bogeska R, Nikoloski G, et al. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med. 2013;210:1003–19. This study reported mutations in nuclear factor erythroid 2 in MPN patients.

    Article  PubMed  CAS  Google Scholar 

  53. Wang W, Schwemmers S, Hexner EO, Pahl HL. AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood. 2010;116:254–66.

    Article  PubMed  CAS  Google Scholar 

  54. Aumann K, Frey AV, May AM, et al. Subcellular mislocalization of the transcription factor NF-E2 in erythroid cells discriminates prefibrotic primary myelofibrosis from essential thrombocythemia. Blood. 2013;122:93–9.

    Article  PubMed  CAS  Google Scholar 

  55. Kaufmann KB, Grunder A, Hadlich T, et al. A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med. 2012;209:35–50.

    Article  PubMed  CAS  Google Scholar 

  56. Shih AH, Abdel-Wahab O, Patel JP, Levine RL. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  PubMed  CAS  Google Scholar 

  57. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23:905–11.

    Article  PubMed  CAS  Google Scholar 

  58. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  PubMed  CAS  Google Scholar 

  59. Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010;468:839–43.

    Article  PubMed  CAS  Google Scholar 

  60. Tefferi A, Lasho TL, Abdel-Wahab O, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia. 2010;24:1302–9.

    Article  PubMed  CAS  Google Scholar 

  61. Pardanani A, Lasho TL, Finke CM, et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia. 2010;24:1146–51.

    Article  PubMed  CAS  Google Scholar 

  62. Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67.

    Article  PubMed  CAS  Google Scholar 

  63. Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  PubMed  CAS  Google Scholar 

  64. Yokochi T, Robertson KD. Preferential methylation of unmethylated DNA by Mammalian de novo DNA methyltransferase Dnmt3a. J Biol Chem. 2002;277:11735–45.

    Article  PubMed  CAS  Google Scholar 

  65. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33.

    Article  PubMed  CAS  Google Scholar 

  66. Stegelmann F, Bullinger L, Schlenk RF, et al. DNMT3A mutations in myeloproliferative neoplasms. Leukemia. 2011;25:1217–9.

    Article  PubMed  CAS  Google Scholar 

  67. Cho YS, Kim EJ, Park UH, et al. Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem. 2006;281:17588–98.

    Article  PubMed  CAS  Google Scholar 

  68. Kim K, Choi J, Heo K, et al. Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem. 2008;283:9113–26.

    Article  PubMed  CAS  Google Scholar 

  69. Abdel-Wahab O, Adli M, LaFave LM, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180–93.

    Article  PubMed  CAS  Google Scholar 

  70. Stein BL, Williams DM, O'Keefe C, et al. Disruption of the ASXL1 gene is frequent in primary, post-essential thrombocytosis and post-polycythemia vera myelofibrosis, but not essential thrombocytosis or polycythemia vera: analysis of molecular genetics and clinical phenotypes. Haematologica. 2011;96:1462–9.

    Article  PubMed  CAS  Google Scholar 

  71. • Score J, Hidalgo-Curtis C, Jones AV, et al. Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. Blood. 2012;119:1208–13. Inactivating mutations in polycomb repressive complex 2 members were reported in MPN and MDS/MPN patients.

    Article  PubMed  CAS  Google Scholar 

  72. • Puda A, Milosevic JD, Berg T, et al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. Am J Hematol. 2012;87:245–50. This study reported frequent deletions of JARID2 and suggested that mutations in polycomb repressive complex 2 components are important for leukemic transformation.

    Article  PubMed  CAS  Google Scholar 

  73. Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell. 2010;7:299–313.

    Article  PubMed  CAS  Google Scholar 

  74. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  PubMed  CAS  Google Scholar 

  75. Kralovics R. Genetic complexity of myeloproliferative neoplasms. Leukemia. 2008;22:1841–8.

    Article  PubMed  CAS  Google Scholar 

  76. Kralovics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108:1377–80.

    Article  PubMed  CAS  Google Scholar 

  77. Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35:32–8.

    Article  PubMed  CAS  Google Scholar 

  78. Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362:369–70.

    Article  PubMed  CAS  Google Scholar 

  79. Beerman I, Maloney WJ, Weissmann IL, Rossi DJ. Stem cells and the aging hematopoietic system. Curr Opin Immunol. 2010;22:500–6.

    Article  PubMed  CAS  Google Scholar 

  80. Beerman I, Bhattacharya D, Zandi S, et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc Natl Acad Sci U S A. 2010;107:5465–70.

    Article  PubMed  CAS  Google Scholar 

  81. •• Forsberg LA, Rasi C, Razzaghian HR, et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet. 2012;90:217–28. This study found in a cohort of twins an accumulation of somatic structural variants with age and somatic changes that are seen in myeloid malignancies.

    Article  PubMed  CAS  Google Scholar 

  82. •• Jacobs KB, Yeager M, Zhou W, et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet. 2012;44:651–8. As in reference 83, this study reported that the frequency of somatic chromosomal changes increases with age and that these lesions correlated with genomic aberrations described for myeloid malignancies.

    Article  PubMed  CAS  Google Scholar 

  83. •• Laurie CC, Laurie CA, Rice K, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44:642–50. As in reference 82, this study reported that the frequency of somatic chromosomal changes increases with age and that these lesions correlated with genomic aberrations described for myeloid malignancies.

    Article  PubMed  CAS  Google Scholar 

  84. •• Busque L, Patel JP, Figueroa ME, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44:1179–81. This study found somatic mutations in TET2 in elderly individuals with clonal hematopoiesis.

    Article  PubMed  CAS  Google Scholar 

  85. Tefferi A, Jimma T, Sulai NH, et al. IDH mutations in primary myelofibrosis predict leukemic transformation and shortened survival: clinical evidence for leukemogenic collaboration with JAK2V617F. Leukemia. 2012;26:475–80.

    Article  PubMed  CAS  Google Scholar 

  86. • Harutyunyan A, Klampfl T, Cazzola M, Kralovics R. p53 lesions in leukemic transformation. N Engl J Med. 2011;364:488–90. P53-related aberrations were associated with post-MPN AML, which suggests that the p53 pathway is important for leukemic transformation.

    Article  PubMed  CAS  Google Scholar 

  87. Berk PD, Goldberg JD, Silverstein MN, et al. Increased incidence of acute leukemia in polycythemia vera associated with chlorambucil therapy. N Engl J Med. 1981;304:441–7.

    Article  PubMed  CAS  Google Scholar 

  88. Bjorkholm M, Derolf AR, Hultcrantz M, et al. Treatment-related risk factors for transformation to acute myeloid leukemia and myelodysplastic syndromes in myeloproliferative neoplasms. J Clin Oncol. 2011;29:2410–5.

    Article  PubMed  Google Scholar 

  89. • Tefferi A, Rumi E, Finazzi G, et al.: Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 2013. This study encompassed seven centers and investigated survival and leukemic transformation in polycythemia vera patients.

  90. Kiladjian JJ, Chevret S, Dosquet C, et al. Treatment of polycythemia vera with hydroxyurea and pipobroman: final results of a randomized trial initiated in 1980. J Clin Oncol. 2011;29:3907–13.

    Article  PubMed  Google Scholar 

  91. Radaelli F, Onida F, Rossi FG, et al. Second malignancies in essential thrombocythemia (ET): a retrospective analysis of 331 patients with long-term follow-up from a single institution. Hematology. 2008;13:195–202.

    Article  PubMed  CAS  Google Scholar 

  92. Spivak JL, Hasselbalch H. Hydroxycarbamide: a user's guide for chronic myeloproliferative disorders. Expert Rev Anticancer Ther. 2011;11:403–14.

    Article  PubMed  CAS  Google Scholar 

  93. Reinhardt HC, Schumacher B. The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–36.

    Article  PubMed  CAS  Google Scholar 

  94. Sterkers Y, Preudhomme C, Lai JL, et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood. 1998;91:616–22.

    PubMed  CAS  Google Scholar 

  95. Kiladjian JJ, Chomienne C, Fenaux P. Interferon-alpha therapy in bcr-abl-negative myeloproliferative neoplasms. Leukemia. 2008;22:1990–8.

    Article  PubMed  CAS  Google Scholar 

  96. Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112:3065–72.

    Article  PubMed  CAS  Google Scholar 

  97. Quintas-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27:5418–24.

    Article  PubMed  CAS  Google Scholar 

  98. Kozlowski A, Charles SA, Harris JM. Development of pegylated interferons for the treatment of chronic hepatitis C. BioDrugs. 2001;15:419–29.

    Article  PubMed  CAS  Google Scholar 

  99. Kiladjian JJ, Masse A, Cassinat B, et al. Clonal analysis of erythroid progenitors suggests that pegylated interferon alpha-2a treatment targets JAK2V617F clones without affecting TET2 mutant cells. Leukemia. 2010;24:1519–23.

    Article  PubMed  CAS  Google Scholar 

  100. • Quintas-Cardama A, Abdel-Wahab O, Manshouri T, et al.: Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon alpha-2a. Blood 2013. This follow-up study of a phase II trial with pegylated interferon alpha-2a focused on the molecular analysis of the interferon treated MPN patients and suggested that genetic aberrations might influence drug response.

Download references

Acknowledgments

This study was supported by the Austrian Science Fund (P23257-B12) and the MPN Research Foundation.

Compliance with Ethics Guidelines

Conflict of Interest

Nicole C.C. Them and Robert Kralovics declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kralovics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Them, N.C.C., Kralovics, R. Genetic Basis of MPN: Beyond JAK2-V617F. Curr Hematol Malig Rep 8, 299–306 (2013). https://doi.org/10.1007/s11899-013-0184-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0184-z

Keywords

Navigation