Skip to main content

Advertisement

Log in

T-Cell Receptor Signaling in Peripheral T-Cell Lymphoma – A Review of Patterns of Alterations in a Central Growth Regulatory Pathway

  • Lymphomas (C Dearden, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

T-cell receptor (TCR) signaling is pivotal in T-cell development and function. In peripheral T-cell lymphomas/leukemias (PTCL/L), histogenesis, transforming events, epidemiology, and clinical presentation are also closely linked to TCR-mediated influences. After reviewing the physiology of normal TCR signaling and cellular responses, we describe here the association of subgroups of PTCL/L with specific patterns of TCR activation as relevant tumor-initiating and/or tumor-sustaining programs. We identify PTCL/L with a functionally intact TCR machinery in which stimulation is possibly incited by exogenous antigens or autoantigens. Distinct from these are tumors with autonomous oncogenic signaling by dysregulated TCR components uncoupled from extrinsic receptor input. A further subset is characterized by transforming events that activate molecules acting as substitutes for TCR signaling, but triggering similar downstream cascades. We finally discuss the consequences of such a functional model for TCR-targeted therapeutic strategies including those that are being tested in the clinic and those that still require further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissue. Lyon: IARC; 2008.

    Google Scholar 

  2. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30.

    Article  PubMed  Google Scholar 

  3. • Pileri SA, Piccaluga PP. New molecular insights into peripheral T cell lymphomas. J Clin Invest. 2012;122(10):3448–55. This is an up-to-date review by experts from the European T-Cell Lymphoma Study Group on our current concepts of the molecular pathogenesis and histogenesis of major subsets of nodal peripheral T-cell lymphomas.

    Article  PubMed  CAS  Google Scholar 

  4. Smith-Garvin J, Koretzky G, Jordan M. T cell activation. Annu Rev Immunol. 2009;27:591–619.

    Article  PubMed  CAS  Google Scholar 

  5. Acuto O, Di Bartolo V, Michel F. Tailoring T-cell receptor signals by proximal negative feedback mechanisms. Nat Rev Immunol. 2008;8(9):699–712.

    Article  PubMed  CAS  Google Scholar 

  6. Baker M, Gamble J, Tooze R, et al. Development of T-leukaemias in CD45 tyrosine phosphatase-deficient mutant lck mice. EMBO J. 2000;19(17):4644–54.

    Article  PubMed  CAS  Google Scholar 

  7. Nakayama T, Yamashita M. The TCR-mediated signaling pathways that control the direction of helper T cell differentiation. Semin Immunol. 2010;22(5):303–9.

    Article  PubMed  CAS  Google Scholar 

  8. Jones D, O’Hara C, Kraus MD, et al. Expression pattern of T-cell-associated chemokine receptors and their chemokines correlates with specific subtypes of T-cell non-Hodgkin lymphoma. Blood. 2000;96(2):685–90.

    PubMed  CAS  Google Scholar 

  9. Zhou L, Chong MMW, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30(5):646–55.

    Article  PubMed  CAS  Google Scholar 

  10. Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123(4):758–62.

    Article  PubMed  Google Scholar 

  11. Boyman O, Létourneau S, Krieg C, Sprent J. Homeostatic proliferation and survival of naïve and memory T cells. Eur J Immunol. 2009;39(8):2088–94.

    Article  PubMed  CAS  Google Scholar 

  12. Surh CD, Sprent J. Homeostasis of naive and memory T cells. Immunity. 2008;29(6):848–62.

    Article  PubMed  CAS  Google Scholar 

  13. Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7(7):532–42.

    Article  PubMed  CAS  Google Scholar 

  14. An J, Fujiwara H, Suemori K, et al. Activation of T-cell receptor signaling in peripheral T-cell lymphoma cells plays an important role in the development of lymphoma-associated hemophagocytosis. Int J Hematol. 2011;93(2):176–85.

    Article  PubMed  CAS  Google Scholar 

  15. Crispín JC, Tsokos GC. Transcriptional regulation of IL-2 in health and autoimmunity. Autoimmun Rev. 2009;8(3):190–5.

    Article  PubMed  Google Scholar 

  16. Burg G, Kempf W, Haeffner A, et al. From inflammation to neoplasia: new concepts in the pathogenesis of cutaneous lymphomas. Recent Results Cancer Res. 2002;160:271–80.

    Article  PubMed  Google Scholar 

  17. Kupper TS, Fuhlbrigge RC. Immune surveillance in the skin: mechanisms and clinical consequences. Nat Rev Immunol. 2004;4(3):211–22.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan SM, Hodges E, Mitchell TJ, et al. Molecular analysis of T-cell receptor β genes in cutaneous T-cell lymphoma reveals Jβ1 bias. J Invest Dermatol. 2006;126(8):1893–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hahtola S, Tuomela S, Elo L, et al. Th1 response and cytotoxicity genes are down-regulated in cutaneous T-cell lymphoma. Clin Cancer Res. 2006;12(16):4812–21.

    Article  PubMed  CAS  Google Scholar 

  20. Dummer R, Geertsen R, Ludwig E, Niederer E, Burg G. Sézary syndrome, T-helper 2 cytokines and accessory factor-1 (AF-1). Leuk Lymphoma. 1998;28(5–6):515–22.

    PubMed  CAS  Google Scholar 

  21. Papadavid E, Economidou J, Psarra A, et al. The relevance of peripheral blood T-helper 1 and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sézary syndrome. Br J Dermatol. 2003;148(4):709–18.

    Article  PubMed  CAS  Google Scholar 

  22. Abdulla F, Duvic M, Kim Y. T-cell lymphomas. Totowa, NJ: Humana Press; 2013.

    Google Scholar 

  23. Martínez-Delgado B, Cuadros M, Honrado E, et al. Differential expression of NF-κB pathway genes among peripheral T-cell lymphomas. Leukemia. 2005;19(12):2254–63.

    Article  PubMed  Google Scholar 

  24. Wlodarski MW, O’Keefe C, Howe EC, et al. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia. Blood. 2005;106(8):2769–80.

    Article  PubMed  CAS  Google Scholar 

  25. Garrido P, Ruiz-Cabello F, Bárcena P, et al. Monoclonal TCR-Vβ13.1+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis: evidence for an antigen-driven chronic T-cell stimulation origin. Blood. 2007;109(11):4890–8.

    Article  PubMed  CAS  Google Scholar 

  26. Lima M, Almeida J, Santos AH, et al. Immunophenotypic analysis of the TCR-vβ repertoire in 98 persistent expansions of CD3+/TCR-αβ + large granular lymphocytes. Am J Pathol. 2001;159(5):1861–8.

    Article  PubMed  CAS  Google Scholar 

  27. Sandberg Y, Almeida J, Gonzalez M, et al. TCRγ/δ + large granular lymphocyte leukemias reflect the spectrum of normal antigen-selected TCRγ/δ + T-cells. Leukemia. 2006;20(3):505–13.

    Article  PubMed  CAS  Google Scholar 

  28. O’Keefe CL, Plasilova M, Wlodarski M, et al. Molecular analysis of TCR clonotypes in LGL: a clonal model for polyclonal responses. J Immunol. 2004;172(3):1960–9.

    PubMed  Google Scholar 

  29. Sandberg Y. Basic and clinical aspects of the T-cell receptor in mature T-cell malignancies. Ph.D. Thesis. Erasmus University Rotterdam; 2007. p. 221.

  30. •• Clemente MJ, Wlodarski MW, Makishima H, et al. Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. Blood. 2011;118(16):4384–93. This paper instructively shows for T-LGL what many researchers in the field of mature T-cell lymphomas have been observing, namely a marked clonal dynamics of retraction and expansion of various TCR-defined clones within one tumor. It also contributes particularly to our understanding of T-LGL representing a spectrum of gradual overlap between reactive lesions and overt malignant neoplasms.

    Article  PubMed  CAS  Google Scholar 

  31. Davey MP, Starkebaum G, Loughran TP. CD3+ leukemic large granular lymphocytes utilize diverse T-cell receptor Vβ genes. Blood. 1995;85(1):146–50.

    PubMed  CAS  Google Scholar 

  32. Loughran TP, Hadlock KG, Perzova R, et al. Epitope mapping of HTLV envelope seroreactivity in LGL leukaemia. Br J Haematol. 1998;101(2):318–24.

    Article  PubMed  CAS  Google Scholar 

  33. Yawalkar N, Ferenczi K, Jones DA, et al. Profound loss of T-cell receptor repertoire complexity in cutaneous T-cell lymphoma. Blood. 2003;102(12):4059–66.

    Article  PubMed  CAS  Google Scholar 

  34. Jackow CM, Cather JC, Hearne V, et al. Association of erythrodermic cutaneous T-cell lymphoma, superantigen-positive Staphylococcus aureus, and oligoclonal T-cell receptor Vβ gene expansion. Blood. 1997;89(1):32–40.

    PubMed  CAS  Google Scholar 

  35. Abrams JT, Balin BJ, Vonderheid EC. Association between Sézary T cell-activating factor, Chlamydia pneumoniae, and cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001;941:69–85.

    Article  PubMed  CAS  Google Scholar 

  36. Tissier F, Martinon F, Camilleri-Broët S, et al. T-cell receptor Vβ repertoire in nodal non-anaplastic peripheral T-cell lymphomas. Pathol Res Pract. 2002;198(6):389–95.

    Article  PubMed  CAS  Google Scholar 

  37. Hodges E, Edwards SE, Howell WM, Smith JL. Polymerase chain reaction amplification analyses of clonality in T-cell malignancy including peripheral T-cell lymphoma. Leukemia. 1994;8(2):295–8.

    PubMed  CAS  Google Scholar 

  38. Tembhare P, Yuan CM, Xi L, et al. Flow cytometric immunophenotypic assessment of T-cell clonality by Vβ repertoire analysis. Am J Clin Pathol. 2011;135(6):890–900.

    Article  PubMed  CAS  Google Scholar 

  39. •• Newrzela S, Al-Ghaili N, Heinrich T, et al. T-cell receptor diversity prevents T-cell lymphoma development. Leukemia. 2012;26(12):2499–507. Mature T cells have been considered to be largely resistant to (experimental) transformation by most known T-cell oncogenes. However, these researchers present data that indicate that in a background of clonal T-cell restriction, as for example observed during senescence or in lymphopenia, the outgrowth of mature T-cell lymphomas is facilitated. This supports a model in which homeostatic mechanisms that stabilize the diversity of the normal T-cell repertoire, e.g. clonal competition, also control the emergence of potentially malignant T-cell clones.

    Article  PubMed  CAS  Google Scholar 

  40. • Geissinger E, Sadler P, Roth S, et al. Disturbed expression of the T-cell receptor/CD3 complex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica. 2010;95(10):1697–704. This study shows that severely altered expression of the TCR/CD3 complex, of TCR-associated transcription factors, and of signal transduction molecules is common and a shared characteristic in CD30 + T-cell lymphomas. This distinguishes these tumors from other subsets, e.g. PTCL-nos, and supports the TCR-based concept of a functional categorization of mature T-cell tumors outlined here.

    Article  PubMed  CAS  Google Scholar 

  41. Admirand J, Herling M, Patel K, et al. T-cell receptor signaling and growth pathways in T-cell tumors. Mod Pathol. 2005;18:220A.

    Article  Google Scholar 

  42. Herling M, Patel KA, Teitell MA, et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111(1):328–37.

    Article  PubMed  CAS  Google Scholar 

  43. Herling M, Khoury JD, Washington LT, et al. A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood. 2004;104(2):328–35.

    Article  PubMed  CAS  Google Scholar 

  44. Hoyer KK, Herling M, Bagrintseva K, et al. T cell leukemia-1 modulates TCR signal strength and IFN-γ levels through phosphatidylinositol 3-kinase and protein kinase c pathway activation. J Immunol. 2005;175(2):864–73.

    PubMed  CAS  Google Scholar 

  45. Herling M, Patel KA, Weit N, et al. High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood. 2009;114(21):4675–86.

    Article  PubMed  CAS  Google Scholar 

  46. Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia. 2006;20(2):313–8.

    Article  PubMed  CAS  Google Scholar 

  47. Feldman AL, Sun DX, Law ME, et al. Overexpression of SYK tyrosine kinase in peripheral T-cell lymphomas. Leukemia. 2008;22(6):1139–43.

    Article  PubMed  CAS  Google Scholar 

  48. Travert M, Huang Y, De Leval L, et al. Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood. 2012;119(24):5795–806.

    Article  PubMed  CAS  Google Scholar 

  49. Ortiz S, Lee W, Smith D, et al. Comparative analyses of differentially induced T-cell receptor-mediated phosphorylation pathways in T lymphoma cells. Exp Biol Med (Maywood). 2010;235(12):1450–63.

    Article  PubMed  CAS  Google Scholar 

  50. • Pechloff K, Holch J, Ferch U, et al. The fusion kinase ITK-SYK mimics a T-cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T-cell lymphoma. J Exp Med. 2010;207(5):1031–44. In the context of the recurrence of the t(5;9)(q33;q22) in a subset of PTCL-nos and the frequently high levels of SYK across many mature T-cell tumors, these authors provide experimental evidence of the transforming capacity of the ITK-SYK fusion tyrosine kinase in peripheral T-cells. Their work supports our TCR-based model by showing that constitutive TCR signaling is a strong oncogenic force.

    Article  PubMed  CAS  Google Scholar 

  51. Dierks C, Adrian F, Fisch P, et al. The ITK-SYK fusion oncogene induces a T-cell lymphoproliferative disease in mice mimicking human disease. Cancer Res. 2010;70(15):6193–204.

    Article  PubMed  CAS  Google Scholar 

  52. Amin HM, Lai R. Pathobiology of ALK + anaplastic large-cell lymphoma. Blood. 2007;110(7):2259–67.

    Article  PubMed  CAS  Google Scholar 

  53. Armitage JO. The aggressive peripheral T-cell lymphomas: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012;87(5):511–9.

    Article  PubMed  Google Scholar 

  54. Hiromura M, Okada F, Obata T, et al. Inhibition of AKT kinase activity by a peptide spanning the βA strand of the proto-oncogene TCL1. J Biol Chem. 2004;279(51):53407–18.

    Article  PubMed  CAS  Google Scholar 

  55. Berger CL, Longley J, Hanlon D, Girardi M, Edelson R. The clonotypic T-cell receptor is a source of tumor-associated antigens in cutaneous T cell lymphoma. Ann N Y Acad Sci. 2001;941:106–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support of relevance to this manuscript: Work on the biology of T-PLL by M.H. and N.W. has been awarded for continuation by a grant of the German José Carreras Leukemia Foundation. M.H. is funded by the German Research Foundation (DFG) under HE-3553/4-1 as part of the FOR-1961 collaborative research group ‘CONTROL-T’.

Compliance with Ethics Guidelines

Conflicts of Interest

Kathrin Warner declares that she has no conflict of interest.

Nicole Weit has been employed by Beckman Coulter GmbH since 2012.

Giuliano Crispatzu declares that he has no conflict of interest.

Joan Admirand declares that she has no conflict of interest.

Dan Jones works at Quest Diagnostics and has received research grants from NIH, and royalties from MD Anderson Cancer Center.

Marco Herling declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Herling.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warner, K., Weit, N., Crispatzu, G. et al. T-Cell Receptor Signaling in Peripheral T-Cell Lymphoma – A Review of Patterns of Alterations in a Central Growth Regulatory Pathway. Curr Hematol Malig Rep 8, 163–172 (2013). https://doi.org/10.1007/s11899-013-0165-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-013-0165-2

Keywords

Navigation