Skip to main content

Advertisement

Log in

Dysplasia Has A Differential Diagnosis: Distinguishing Genuine Myelodysplastic Syndromes (MDS) From Mimics, Imitators, Copycats and Impostors

  • Myelodysplastic Syndromes (M Sekeres, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Just as a pawnshop owner who is unable to distinguish a genuine Rolex™ watch from a cheap knockoff courts financial ruin, the physician who fails to discriminate between authentic myelodysplastic syndromes (MDS) and conditions resembling MDS risks misinforming or harming patients. This review summarizes minimal criteria for diagnosing MDS and discusses common diagnostic challenges. MDS needs to be separated from numerous neoplastic and non-clonal hematologic disorders that can mimic MDS, including other myeloid neoplasms, nutritional deficiencies, toxin exposures, aplastic anemia, and inherited disorders (e.g., congenital sideroblastic anemia). Some distinctions are more critical therapeutically than others; e.g., recognizing B12 deficiency is more important than parsing high-risk MDS from erythroleukemia. Diagnostically ambiguous cases may be assigned holding-pattern terms, “idiopathic cytopenia(s) of undetermined significance” (ICUS) or “idiopathic dysplasia of undetermined significance” (IDUS), while awaiting clarifying information or further clinical developments. In the future, advances in molecular pathology will improve diagnostic accuracy, especially in morphologically non-descript cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol. 1982;51(2):189–99.

    PubMed  CAS  Google Scholar 

  3. Vardiman JW. Hematopathological concepts and controversies in the diagnosis and classification of myelodysplastic syndromes. Hematology Am Soc Hematol Educ Program. 2006:199–204. doi:2006/1/199 [pii] 10.1182/asheducation-2006.1.199.

  4. Dickstein JI, Vardiman JW. Issues in the pathology and diagnosis of the chronic myeloproliferative disorders and the myelodysplastic syndromes. Am J Clin Pathol. 1993;99(4):513–25.

    PubMed  CAS  Google Scholar 

  5. Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G, Estrov Z, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood. 2011;118(17):4690–3. doi:10.1182/blood-2011-03-342642.

    Article  PubMed  CAS  Google Scholar 

  6. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999;17(12):3835–49.

    PubMed  CAS  Google Scholar 

  7. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi:10.1182/blood-2009-03-209262.

    Article  PubMed  CAS  Google Scholar 

  8. Brunning RD, Orazi A, Germing U, Le Beau MM, Porwit A, Baumann I, et al. Myelodysplastic syndromes/neoplasms, overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO Classification of Tumours of the Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: IARC Press; 2008. p. 89–93.

    Google Scholar 

  9. Bain BJ. The bone marrow aspirate of healthy subjects. Br J Haematol. 1996;94(1):206–9.

    Article  PubMed  CAS  Google Scholar 

  10. Parmentier S, Schetelig J, Lorenz K, Kramer M, Ireland R, Schuler U, et al. Assessment of dysplastic hematopoiesis: lessons from healthy bone marrow donors. Haematologica. 2012;97(5):723–30. doi:10.3324/haematol.2011.056879.

    Article  PubMed  Google Scholar 

  11. Della Porta MG, Picone C, Pascutto C, Malcovati L, Tamura H, Handa H, et al. Multicenter validation of a reproducible flow cytometric score for the diagnosis of low-grade myelodysplastic syndromes: results of a European LeukemiaNET study. Haematologica. 2012;97(8):1209–17. doi:10.3324/haematol.2011.048421.

    Article  PubMed  Google Scholar 

  12. • Valent P, Horny HP, Bennett JM, Fonatsch C, Germing U, Greenberg P, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: Consensus statements and report from a working conference. Leuk Res. 2007;31(6):727–36. doi:10.1016/j.leukres.2006.11.009. ICUS is a useful term to describe cytopenias that are not yet able to be diagnosed definitively as MDS but that could be MDS and might clearly turn into MDS over time. This workshop report discusses current definition of ICUS and appropriate diagnostic evaluation. It is appropriate to follow such patients over time, as in most cases the illness will eventually “declare” itself.

    Article  PubMed  Google Scholar 

  13. van de Loosdrecht AA, Alhan C, Bene MC, Della Porta MG, Drager AM, Feuillard J, et al. Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica. 2009;94(8):1124–34. doi:10.3324/haematol.2009.005801.

    Article  PubMed  Google Scholar 

  14. Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P, et al. Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia. 2012;26(7):1730–41. doi:10.1038/leu.2012.30leu201230[pii].

    Article  PubMed  CAS  Google Scholar 

  15. Marisavljevic D, Rolovic Z, Ludoski-Pantic M, Djordjevic V, Novak A. Spontaneous remission in adults with primary myelodysplastic syndromes: incidence and characteristics of patients. Med Oncol. 2005;22(4):407–10. doi:10.1385/MO:22:4:407.

    Article  PubMed  Google Scholar 

  16. • Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364(26):2496–506. doi:10.1056/NEJMoa1013343. More than 25 recurrent somatic mutations have been described in MDS. This report describes phenotype-genotype correlations of 18 of these mutations in a large cohort of MDS primary samples. The presence of such mutations may confirm oligoclonal hematopoiesis.

    Article  PubMed  CAS  Google Scholar 

  17. • Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9. doi:10.1038/nature10496. In some cases of pure sideroblastic anemia, it can be difficult to be confident about whether the patient has typical acquired RARS or a late presentation of one of the forms of congenital sideroblastic anemia. Microcytosis can be a clue to an ALAS2 germline mutations, but the finding of a somatic SF3B1 mutation clinches the diagnosis as MDS-RARS.

    Article  PubMed  CAS  Google Scholar 

  18. Khalidi HS, Chang KL, Medeiros LJ, Brynes RK, Slovak ML, Murata-Collins JL, et al. Acute lymphoblastic leukemia. Survey of immunophenotype, French-American-British classification, frequency of myeloid antigen expression, and karyotypic abnormalities in 210 pediatric and adult cases. Am J Clin Pathol. 1999;111(4):467–76.

    PubMed  CAS  Google Scholar 

  19. Valent P, Horny HP. Minimal diagnostic criteria for myelodysplastic syndromes and separation from ICUS and IDUS: update and open questions. Eur J Clin Investig. 2009;39(7):548–53. doi:10.1111/j.1365-2362.2009.02151.x.

    Article  CAS  Google Scholar 

  20. Wimazal F, Fonatsch C, Thalhammer R, Schwarzinger I, Mullauer L, Sperr WR, et al. Idiopathic cytopenia of undetermined significance (ICUS) versus low risk MDS: the diagnostic interface. Leuk Res. 2007;31(11):1461–8. doi:10.1016/j.leukres.2007.03.015.

    Article  PubMed  Google Scholar 

  21. Valent P, Jager E, Mitterbauer-Hohendanner G, Mullauer L, Schwarzinger I, Sperr WR, et al. Idiopathic bone marrow dysplasia of unknown significance (IDUS): definition, pathogenesis, follow up, and prognosis. Am J Cancer Res. 2011;1(4):531–41.

    PubMed  Google Scholar 

  22. Hanson CA, Hoyer JD, Zakko L, Hodnefield JM, Steensma DP. Is idiopathic cytopenia of undetermined significance (ICUS) a valid clinical concept? A longitudinal clinicopathological study [Abstract P092, presented at the 10th International Symposium on Myelodysplastic Syndromes, Patras, Greece, May 2009.]. Leukemia Research 2009;33(Supplement 1).

  23. Schroeder T, Ruf L, Bernhardt A, Hildebrandt B, Aivado M, Aul C, et al. Distinguishing myelodysplastic syndromes (MDS) from idiopathic cytopenia of undetermined significance (ICUS): HUMARA unravels clonality in a subgroup of patients. Ann Oncol. 2010;21(11):2267–71. doi:10.1093/annonc/mdq233.

    Article  PubMed  CAS  Google Scholar 

  24. • Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366(12):1090–8. doi:10.1056/NEJMoa1106968. Whole genome sequencing confirms that even in MDS without excess blasts, multiple missense and nonsense somatic mutations are already present and the neoplastic clones usually dominate the marrow.

    Article  PubMed  CAS  Google Scholar 

  25. Pedersen-Bjergaard J, Pedersen M, Roulston D, Philip P. Different genetic pathways in leukemogenesis for patients presenting with therapy-related myelodysplasia and therapy-related acute myeloid leukemia. Blood. 1995;86(9):3542–52.

    PubMed  CAS  Google Scholar 

  26. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22(2):240–8. doi:10.1038/sj.leu.2405078.

    Article  PubMed  CAS  Google Scholar 

  27. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44(6):642–50. doi:10.1038/ng.2271.

    Article  PubMed  CAS  Google Scholar 

  28. Li W, Vijg J. Measuring genome instability in aging - a mini-review. Gerontology. 2012;58(2):129–38. doi:10.1159/000334368.

    Article  PubMed  CAS  Google Scholar 

  29. Leone G, Pagano L, Ben-Yehuda D, Voso MT. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica. 2007;92(10):1389–98.

    Article  PubMed  CAS  Google Scholar 

  30. Steele JM, Sung L, Klaassen R, Fernandez CV, Yanofsky R, Wu J, et al. Disease progression in recently diagnosed patients with inherited marrow failure syndromes: a Canadian Inherited Marrow Failure Registry (CIMFR) report. Pediatr Blood Cancer. 2006;47(7):918–25. doi:10.1002/pbc.20876.

    Article  PubMed  CAS  Google Scholar 

  31. Mehta PA, Harris RE, Davies SM, Kim MO, Mueller R, Lampkin B, et al. Numerical chromosomal changes and risk of development of myelodysplastic syndrome–acute myeloid leukemia in patients with Fanconi anemia. Cancer Genet Cytogenet. 2010;203(2):180–6. doi:10.1016/j.cancergencyto.2010.07.127.

    Article  PubMed  CAS  Google Scholar 

  32. Scheinberg P, Young NS. How I treat acquired aplastic anemia. Blood. 2012;120(6):1185–96. doi:10.1182/blood-2011-12-274019.

    Article  PubMed  CAS  Google Scholar 

  33. Dokal I. Dyskeratosis congenita. Hematology Am Soc Hematol Educ Program. 2011;2011:480–6. doi:10.1182/asheducation-2011.1.480.

    Article  PubMed  Google Scholar 

  34. Beel K, Vandenberghe P. G-CSF receptor (CSF3R) mutations in X-linked neutropenia evolving to acute myeloid leukemia or myelodysplasia. Haematologica. 2009;94(10):1449–52. doi:10.3324/haematol.2009.009001.

    Article  PubMed  CAS  Google Scholar 

  35. Gohring G, Karow A, Steinemann D, Wilkens L, Lichter P, Zeidler C, et al. Chromosomal aberrations in congenital bone marrow failure disorders–an early indicator for leukemogenesis? Ann Hematol. 2007;86(10):733–9. doi:10.1007/s00277-007-0337-z.

    Article  PubMed  CAS  Google Scholar 

  36. Link DC, Kunter G, Kasai Y, Zhao Y, Miner T, McLellan MD, et al. Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood. 2007;110(5):1648–55. doi:10.1182/blood-2007-03-081216.

    Article  PubMed  CAS  Google Scholar 

  37. Palmblad J, Papadaki HA. Chronic idiopathic neutropenias and severe congenital neutropenia. Curr Opin Hematol. 2008;15(1):8–14. doi:10.1097/MOH.0b013e3282f172d3.

    Article  PubMed  CAS  Google Scholar 

  38. Vandenberghe P, Beel K. Severe congenital neutropenia, a genetically heterogeneous disease group with an increased risk of AML/MDS. Pediatr Rep. 2011;3 Suppl 2:e9. doi:10.4081/pr.2011.s2.e9.

    PubMed  Google Scholar 

  39. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23(2):166–75. doi:10.1038/13793.

    Article  PubMed  CAS  Google Scholar 

  40. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7. doi:10.1038/ng.913.

    Article  PubMed  CAS  Google Scholar 

  41. Iolascon A, Russo R, Delaunay J. Congenital dyserythropoietic anemias. Curr Opin Hematol. 2011;18(3):146–51. doi:10.1097/MOH.0b013e32834521b0.

    Article  PubMed  CAS  Google Scholar 

  42. Head DR, Kopecky K, Bennett JM, Grenier K, Morrison FS, Miller KB, et al. Pathogenetic implications of internuclear bridging in myelodysplastic syndrome. An Eastern Cooperative Oncology Group/Southwest Oncology Group Cooperative Study. Cancer. 1989;64(11):2199–202.

    Article  PubMed  CAS  Google Scholar 

  43. Albers CA, Cvejic A, Favier R, Bouwmans EE, Alessi MC, Bertone P, et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat Genet. 2011;43(8):735–7. doi:10.1038/ng.885.

    Article  PubMed  CAS  Google Scholar 

  44. Toyama K, Ohyashiki K, Yoshida Y, Abe T, Asano S, Hirai H, et al. Clinical and cytogenetic findings of myelodysplastic syndromes showing hypocellular bone marrow or minimal dysplasia, in comparison with typical myelodysplastic syndromes. Int J Hematol. 1993;58(1–2):53–61.

    PubMed  CAS  Google Scholar 

  45. Barrett J, Saunthararajah Y, Molldrem J. Myelodysplastic syndrome and aplastic anemia: distinct entities or diseases linked by a common pathophysiology? Semin Hematol. 2000;37(1):15–29.

    Article  PubMed  CAS  Google Scholar 

  46. • Afable 2nd MG, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117(25):6876–84. doi:10.1182/blood-2010-11-314393. Aplastic anemia can be challenging to distinguish from hypoplastic MDS. SNP arrays can aid in this distinction, as discussed in the text. SNP arrays are now commercially available from several reference labs and can be ordered by clinicians in ambiguous cases.

    Article  PubMed  CAS  Google Scholar 

  47. Afable 2nd MG, Tiu RV, Maciejewski JP. Clonal evolution in aplastic anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:90–5. doi:10.1182/asheducation-2011.1.90.

    Article  PubMed  Google Scholar 

  48. Tiu R, Gondek L, O'Keefe C, Maciejewski JP. Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia. 2007;21(8):1648–57. doi:10.1038/sj.leu.2404757.

    Article  PubMed  CAS  Google Scholar 

  49. Marsh JC, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147(1):43–70. doi:10.1111/j.1365-2141.2009.07842.x.

    Article  PubMed  CAS  Google Scholar 

  50. Walne AJ, Dokal A, Plagnol V, Beswick R, Kirwan M, de la Fuente J, et al. Exome sequencing identifies MPL as a causative gene in familial aplastic anemia. Haematologica. 2012;97(4):524–8. doi:10.3324/haematol.2011.052787.

    Article  PubMed  Google Scholar 

  51. Molldrem JJ, Leifer E, Bahceci E, Saunthararajah Y, Rivera M, Dunbar C, et al. Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann Intern Med. 2002;137(3):156–63.

    PubMed  Google Scholar 

  52. Passweg JR, Giagounidis AA, Simcock M, Aul C, Dobbelstein C, Stadler M, et al. Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care--SAKK 33/9. J Clin Oncol. 2011;29(3):303–9. doi:10.1200/JCO.2010.31.2686.

    Article  PubMed  CAS  Google Scholar 

  53. Saunthararajah Y, Nakamura R, Nam JM, Robyn J, Loberiza F, Maciejewski JP, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood. 2002;100(5):1570–4.

    PubMed  CAS  Google Scholar 

  54. Killick SB, Mufti G, Cavenagh JD, Mijovic A, Peacock JL, Gordon-Smith EC, et al. A pilot study of antithymocyte globulin (ATG) in the treatment of patients with 'low-risk' myelodysplasia. Br J Haematol. 2003;120(4):679–84.

    Article  PubMed  CAS  Google Scholar 

  55. Dhodapkar MV, Li CY, Lust JA, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood. 1994;84(5):1620–7.

    PubMed  CAS  Google Scholar 

  56. Saunthararajah Y, Molldrem JL, Rivera M, Williams A, Stetler-Stevenson M, Sorbara L, et al. Coincident myelodysplastic syndrome and T-cell large granular lymphocytic disease: clinical and pathophysiological features. Br J Haematol. 2001;112(1):195–200.

    Article  PubMed  CAS  Google Scholar 

  57. Huh YO, Medeiros LJ, Ravandi F, Konoplev S, Jorgensen JL, Miranda RN. T-cell large granular lymphocyte leukemia associated with myelodysplastic syndrome: a clinicopathologic study of nine cases. Am J Clin Pathol. 2009;131(3):347–56. doi:10.1309/AJCP6YHI1JEXAWAP.

    Article  PubMed  CAS  Google Scholar 

  58. Maciejewski JP, O'Keefe C, Gondek L, Tiu R. Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones. Folia Histochem Cytobiol. 2007;45(1):5–14.

    PubMed  CAS  Google Scholar 

  59. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905–13. doi:10.1056/NEJMoa1114885.

    Article  PubMed  CAS  Google Scholar 

  60. Strupp C, Gattermann N, Giagounidis A, Aul C, Hildebrandt B, Haas R, et al. Refractory anemia with excess of blasts in transformation: analysis of reclassification according to the WHO proposals. Leuk Res. 2003;27(5):397–404.

    Article  PubMed  Google Scholar 

  61. Huh YO, Jilani I, Estey E, Giles F, Kantarjian H, Freireich E, et al. More cell death in refractory anemia with excess blasts in transformation than in acute myeloid leukemia. Leukemia. 2002;16(11):2249–52. doi:10.1038/sj.leu.2402704.

    Article  PubMed  CAS  Google Scholar 

  62. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol. 2010;28(4):562–9. doi:10.1200/JCO.2009.23.8329.

    Article  PubMed  CAS  Google Scholar 

  63. Kasyan A, Medeiros LJ, Zuo Z, Santos FP, Ravandi-Kashani F, Miranda R, et al. Acute erythroid leukemia as defined in the World Health Organization classification is a rare and pathogenetically heterogeneous disease. Mod Pathol. 2010;23(8):1113–26. doi:10.1038/modpathol.2010.96.

    Article  PubMed  Google Scholar 

  64. Hasserjian RP, Zuo Z, Garcia C, Tang G, Kasyan A, Luthra R, et al. Acute erythroid leukemia: a reassessment using criteria refined in the 2008 WHO classification. Blood. 2010;115(10):1985–92. doi:10.1182/blood-2009-09-243964.

    Article  PubMed  CAS  Google Scholar 

  65. Liu W, Hasserjian RP, Hu Y, Zhang L, Miranda RN, Medeiros LJ, et al. Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification. Mod Pathol. 2011;24(3):375–83. doi:10.1038/modpathol.2010.194.

    Article  PubMed  CAS  Google Scholar 

  66. Park S, Picard F, Dreyfus F. Erythroleukemia: a need for a new definition. Leukemia. 2002;16(8):1399–401. doi:10.1038/sj.leu.2402549.

    Article  PubMed  CAS  Google Scholar 

  67. Dameshek W, Baldini M. The Di Guglielmo syndrome. Blood. 1958;13(2):192–4.

    PubMed  CAS  Google Scholar 

  68. Hyjek E, Vardiman JW. Myelodysplastic/myeloproliferative neoplasms. Semin Diagn Pathol. 2011;28(4):283–97.

    Article  PubMed  Google Scholar 

  69. Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood. 2012;119(2):569–72. doi:10.1182/blood-2011-09-377994.

    Article  PubMed  CAS  Google Scholar 

  70. Gattermann N, Aul C, Schneider W. Two types of acquired idiopathic sideroblastic anaemia (AISA). Br J Haematol. 1990;74(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  71. Cotter PD, May A, Fitzsimons EJ, Houston T, Woodcock BE, al-Sabah AI, et al. Late-onset X-linked sideroblastic anemia. Missense mutations in the erythroid delta-aminolevulinate synthase (ALAS2) gene in two pyridoxine-responsive patients initially diagnosed with acquired refractory anemia and ringed sideroblasts. J Clin Invest. 1995;96(4):2090–6. doi:10.1172/JCI118258.

    Article  PubMed  CAS  Google Scholar 

  72. Fleming MD. Congenital sideroblastic anemias: iron and heme lost in mitochondrial translation. Hematology Am Soc Hematol Educ Program. 2011;2011:525–31. doi:10.1182/asheducation-2011.1.525.

    Article  PubMed  Google Scholar 

  73. Baumann Kreuziger LM, Wolanskyj AP, Hanson CA, Steensma DP. Lack of efficacy of pyridoxine (vitamin B6) treatment in acquired idiopathic sideroblastic anaemia, including refractory anaemia with ring sideroblasts. Eur J Haematol. 2011;86(6):512–6. doi:10.1111/j.1600-0609.2011.01604.x.

    Article  PubMed  Google Scholar 

  74. Colucci G, Silzle T, Solenthaler M. Pyrazinamide-induced sideroblastic anemia. Am J Hematol. 2012;87(3):305. doi:10.1002/ajh.22125.

    Article  PubMed  Google Scholar 

  75. Kumar N, Elliott MA, Hoyer JD, Harper Jr CM, Ahlskog JE, Phyliky RL. "Myelodysplasia," myeloneuropathy, and copper deficiency. Mayo Clin Proc. 2005;80(7):943–6. doi:10.4065/80.7.943.

    Article  PubMed  Google Scholar 

  76. Haddad AS, Subbiah V, Lichtin AE, Theil KS, Maciejewski JP. Hypocupremia and bone marrow failure. Haematologica. 2008;93(1):e1–5. doi:10.3324/haematol.12121.

    Article  PubMed  CAS  Google Scholar 

  77. • Yang DT, Cook RJ. Spurious elevations of vitamin B12 with pernicious anemia. N Engl J Med. 2012;366(18):1742–3. doi:10.1056/NEJMc1201655. Clinicians should be aware that serum vitamin B12 measurements may be spuriously elevated with certain new automated analyzers, due to blocking of the immunoassay by intrinsic factor.

    Article  PubMed  CAS  Google Scholar 

  78. Latvala J, Parkkila S, Niemela O. Excess alcohol consumption is common in patients with cytopenia: studies in blood and bone marrow cells. Alcohol Clin Exp Res. 2004;28(4):619–24.

    Article  PubMed  Google Scholar 

  79. Ballard HS. The hematological complications of alcoholism. Alcohol Health Res World. 1997;21(1):42–52.

    PubMed  CAS  Google Scholar 

  80. Rezuke WN, Anderson C, Pastuszak WT, Conway SR, Firshein SI. Arsenic intoxication presenting as a myelodysplastic syndrome: a case report. Am J Hematol. 1991;36(4):291–3.

    Article  PubMed  CAS  Google Scholar 

  81. Pande A, Bhattacharyya M, Pain S, Samanta A. Study of bone marrow changes in antiretroviral naive human immunodeficiency virus-infected anemic patients. Indian J Pathol Microbiol. 2011;54(3):542–6. doi:10.4103/0377-4929.85089.

    Article  PubMed  Google Scholar 

  82. Ryu T, Ikeda M, Okazaki Y, Tokuda H, Yoshino N, Honda M, et al. Myelodysplasia associated with acquired immunodeficiency syndrome. Intern Med. 2001;40(8):795–801.

    Article  PubMed  CAS  Google Scholar 

  83. Tripathi AK, Kalra P, Misra R, Kumar A, Gupta N. Study of bone marrow abnormalities in patients with HIV disease. J Assoc Physicians India. 2005;53:105–10.

    PubMed  CAS  Google Scholar 

  84. Steensma DP, Tefferi A, Li CY. Splenic histopathological patterns in chronic myelomonocytic leukemia with clinical correlations: reinforcement of the heterogeneity of the syndrome. Leuk Res. 2003;27(9):775–82.

    Article  PubMed  Google Scholar 

  85. Mastrodemou S, Vazgiourakis V, Velegraki M, Pavlaki K, Goulielmos GN, Papadaki HA. Clonal patterns of X-chromosome inactivation in peripheral blood cells of female patients with chronic idiopathic neutropenia. Haematologica. 2012. doi:10.3324/haematol.2012.069310.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Financial disclosure

None relevant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Steensma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steensma, D.P. Dysplasia Has A Differential Diagnosis: Distinguishing Genuine Myelodysplastic Syndromes (MDS) From Mimics, Imitators, Copycats and Impostors. Curr Hematol Malig Rep 7, 310–320 (2012). https://doi.org/10.1007/s11899-012-0140-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-012-0140-3

Keywords

Navigation