Skip to main content

Advertisement

Log in

Epstein-Barr Virus and the Pathogenesis of T and NK Lymphoma: a Mystery Unsolved

  • T-Cell and Other Lymphoproliferative Malignancies (C Dearden, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The potent growth-transforming properties of Epstein-Barr virus (EBV) and its role in pathogenesis of a range of B cell and epithelial malignancies are well established. By contrast, the association of this B lymphotropic virus with malignancies of T and NK cell origin was entirely unexpected. Although a number of mature T and NK lymphoma subtypes have been associated with EBV, evidence for a robust viral/tumour relationship is principally limited to extranodal NK/T lymphoma (ENKTL). Despite progress in diagnosis and classification, alongside an evolving understanding of ENKTL pathobiology, EBV’s contribution to lymphomagenesis remains largely unresolved. Challenges relate to the rarity of this entity, a lack of clinical and biological correlative data and scarcity of fresh tissue for molecular and functional studies. Nonetheless, recent studies on viral and cellular gene expression have permitted new avenues of investigation into ENKTL pathobiology aiming to extend our understanding of disease biology and ultimately improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rickinson AB, Kieff E. Epstein-Barr virus. In: Knipe DM, Howley PM, editors. Fields Virology. 4th ed. Philadelphia: Lippincott, Williams & Raven; 2001. p. 2575–627.

    Google Scholar 

  2. Hislop AD, Taylor GS, Sauce D, Rickinson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol. 2007;25:587–617.

    Article  PubMed  CAS  Google Scholar 

  3. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4(10):757–68.

    Article  PubMed  CAS  Google Scholar 

  4. Fox CP, Shannon-Lowe C, Rowe M. Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations. Herpesviridae. 2011;2:8.

    Article  PubMed  Google Scholar 

  5. Hudnall SD, Ge Y, Wei L, et al. Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol. 2005;18(4):519–27.

    Article  PubMed  Google Scholar 

  6. Trempat P, Tabiasco J, Andre P, et al. Evidence for early infection of nonneoplastic natural killer cells by Epstein-Barr virus. J Virol. 2002;76(21):11139–42.

    Article  PubMed  CAS  Google Scholar 

  7. Jones JF, Shurin S, Abramowsky C, et al. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med. 1988;318(12):733–41.

    Article  PubMed  CAS  Google Scholar 

  8. Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood. 1994;84(5):1361–92.

    PubMed  CAS  Google Scholar 

  9. Swerdlow SH, Campo E, Harris NL, Jaffe ES, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC; 2008.

    Google Scholar 

  10. Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia. 2011;25(2):348–58. This study applied gene expression profiling to generate a molecular classifier for ENKTL, comprising 84 transcripts primarily derived from the neoplastic NK cells. The same classifier highlighted a subgroup of gammadelta-PTCLs within ENKTL cases, as well as in cases initially classified as PTCL-not otherwise specified. The NOTCH-1 and AURKA pathways were predicted to be important from GEP studies and preliminary functional data suggested that pharmacological inhibition of these pathways could inhibit growth in cell line models.

    Article  PubMed  CAS  Google Scholar 

  11. Iqbal J, Weisenburger DD, Greiner TC, et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood. 2010;115(5):1026–36.

    Article  PubMed  CAS  Google Scholar 

  12. Agnelli L, Mereu E, Pellegrino E, et al. Identification of a three-gene model as a powerful diagnostic tool for the recognition of ALK negative ALCL. Blood. 2012;120(6):1274–81.

    Article  PubMed  CAS  Google Scholar 

  13. McBride P. Photographs of a case of rapid destruction of the nose and face. J Laryngol Otol. 1897;12:64–6.

    Google Scholar 

  14. Woods R. Observations on malignant granuloma of the nose. Br Med J. 1921;2:65.

    Article  PubMed  CAS  Google Scholar 

  15. Stewart JP. Progressive lethal granulomatous ulceration of the nose. J Laryngol. 1933;48:657–701.

    Article  Google Scholar 

  16. Ishii Y, Yamanaka N, Ogawa K, et al. Nasal T-cell lymphoma as a type of so-called "lethal midline granuloma". Cancer. 1982;50(11):2336–44.

    Article  PubMed  CAS  Google Scholar 

  17. Kanavaros P, Lescs MC, Briere J, et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood. 1993;81(10):2688–95.

    PubMed  CAS  Google Scholar 

  18. Suzumiya J, Takeshita M, Kimura N, et al. Expression of adult and fetal natural killer cell markers in sinonasal lymphomas. Blood. 1994;83(8):2255–60.

    PubMed  CAS  Google Scholar 

  19. Wong KF, Chan JK, Ng CS, et al. CD56 (NKH1)-positive hematolymphoid malignancies: an aggressive neoplasm featuring frequent cutaneous/mucosal involvement, cytoplasmic azurophilic granules, and angiocentricity. Hum Pathol. 1992;23(7):798–804.

    Article  PubMed  CAS  Google Scholar 

  20. Ho FC, Srivastava G, Loke SL, et al. Presence of Epstein-Barr virus DNA in nasal lymphomas of B and 'T' cell type. Hematol Oncol. 1990;8(5):271–81.

    Article  PubMed  CAS  Google Scholar 

  21. Chan JK, Tsang WY, Ng CS. Clarification of CD3 immunoreactivity in nasal T/natural killer cell lymphomas: the neoplastic cells are often CD3 epsilon+. Blood. 1996;87(2):839–41.

    PubMed  CAS  Google Scholar 

  22. Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal NK/T-cell lymphoma: a study of 136 cases from the International Peripheral T-cell Lymphoma Project. Blood. 2009;113(17):3931–7.

    Article  PubMed  CAS  Google Scholar 

  23. Harabuchi Y, Yamanaka N, Kataura A, et al. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet. 1990;335(8682):128–30.

    Article  PubMed  CAS  Google Scholar 

  24. Kawa-Ha K, Ishihara S, Ninomiya T, et al. CD3-negative lymphoproliferative disease of granular lymphocytes containing Epstein-Barr viral DNA. J Clin Invest. 1989;84(1):51–5.

    Article  PubMed  CAS  Google Scholar 

  25. Chan JK, Yip TT, Tsang WY, et al. Detection of Epstein-Barr viral RNA in malignant lymphomas of the upper aerodigestive tract. Am J Surg Pathol. 1994;18(9):938–46.

    Article  PubMed  CAS  Google Scholar 

  26. Arber DA, Weiss LM, Albujar PF. Nasal lymphomas in Peru. High incidence of T-cell immunophenotype and Epstein-Barr virus infection. Am J Surg Pathol. 1993;17(4):392–9.

    Article  PubMed  CAS  Google Scholar 

  27. Yoon SO, Suh C, Lee DH, et al. Distribution of lymphoid neoplasms in the Republic of Korea: analysis of 5318 cases according to the World Health Organization classification. Am J Hematol. 2010;85(10):760–4.

    Article  PubMed  Google Scholar 

  28. Au WY, Ma SY, Chim CS, et al. Clinicopathologic features and treatment outcome of mature T-cell and natural killer-cell lymphomas diagnosed according to the World Health Organization classification scheme: a single center experience of 10 years. Ann Oncol. 2005;16(2):206–14.

    Article  PubMed  Google Scholar 

  29. Huang WT, Chang KC, Huang GC, et al. Bone marrow that is positive for Epstein-Barr virus encoded RNA-1 by in situ hybridization is related with a poor prognosis in patients with extranodal natural killer/T-cell lymphoma, nasal type. Haematologica. 2005;90(8):1063–9.

    PubMed  CAS  Google Scholar 

  30. Liang R. Advances in the management and monitoring of extranodal NK/T-cell lymphoma, nasal type. Br J Haematol. 2009;147(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  31. Wu X, Li P, Zhao J, Yang X, et al. A clinical study of 115 patients with extranodal natural killer/T-cell lymphoma, nasal type. Clin Oncol (R Coll Radiol). 2008;20(8):619–25.

    Article  CAS  Google Scholar 

  32. Siu LL, Chan V, Chan JK, et al. Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol. 2000;157(6):1803–9.

    Article  PubMed  CAS  Google Scholar 

  33. Siu LL, Wong KF, Chan JK, Kwong YL. Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol. 1999;155(5):1419–25.

    Article  PubMed  CAS  Google Scholar 

  34. Ko YH, Choi KE, Han JH, et al. Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry. 2001;46(2):85–91.

    Article  PubMed  CAS  Google Scholar 

  35. Wong KF, Chan JK, Kwong YL. Identification of del(6)(q21q25) as a recurring chromosomal abnormality in putative NK cell lymphoma/leukaemia. Br J Haematol. 1997;98(4):922–6.

    Article  PubMed  CAS  Google Scholar 

  36. Huang Y, de Reynies A, de Leval L, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115(6):1226–37. This study used gene expression profiling to delineate a distinct molecular signature for ENKTL and to identify potential therapeutic targets by examining the deregulated intracellular pathways operating within the tumour samples. Recognising the PDGFRα pathway as a potential therapeutic target, preliminary functional studies demonstrated that tyrosine kinase inhibitors arrest growth of ENKTL cell lines.

    Article  PubMed  CAS  Google Scholar 

  37. Iqbal J, Kucuk C, Deleeuw RJ, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23(6):1139–51.

    Article  PubMed  CAS  Google Scholar 

  38. Chan JKC, Quintanilla-Martinez L, Ferry JA, Peh SC. Extranodal NK/T-cell lymphoma, nasal type. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. WHO classfication of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC; 2007. p. 285–8.

    Google Scholar 

  39. Tao Q, Ho FC, Loke SL, Srivastava G. Epstein-Barr virus is localized in the tumour cells of nasal lymphomas of NK, T or B cell type. Int J Cancer. 1995;60(3):315–20.

    Article  PubMed  CAS  Google Scholar 

  40. Minarovits J, Hu LF, Imai S, et al. Clonality, expression and methylation patterns of the Epstein-Barr virus genomes in lethal midline granulomas classified as peripheral angiocentric T cell lymphomas. J Gen Virol. 1994;75(Pt 1):77–84.

    Article  PubMed  CAS  Google Scholar 

  41. Teo W-L, Tan S-Y. Loss of Epstein-Barr virus-encoded RNA expression in cutaneous dissemination of natural killer/T-cell lymphoma. J Clin Oncol. 2011;29(12):e342–3.

    Article  PubMed  Google Scholar 

  42. Chiang AK, Tao Q, Srivastava G, Ho FC. Nasal NK- and T-cell lymphomas share the same type of Epstein-Barr virus latency as nasopharyngeal carcinoma and Hodgkin's disease. Int J Cancer. 1996;68(3):285–90.

    Article  PubMed  CAS  Google Scholar 

  43. van Gorp J, Brink A, Oudejans JJ, et al. Expression of Epstein-Barr virus encoded latent genes in nasal T cell lymphomas. J Clin Pathol. 1996;49(1):72–6.

    Article  PubMed  Google Scholar 

  44. Hsieh PP, Tung CL, Chan AB, et al. EBV viral load in tumor tissue is an important prognostic indicator for nasal NK/T-cell lymphoma. Am J Clin Pathol. 2007;128(4):579–84.

    Article  PubMed  Google Scholar 

  45. Au W-Y, Pang A, Choy C, et al. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9.

    Article  PubMed  CAS  Google Scholar 

  46. Ito Y, Kimura H, Maeda Y, et al. Pretreatment EBV-DNA copy number is predictive of response and toxicities to SMILE chemotherapy for extranodal NK/T-cell lymphoma, nasal type. Clin Cancer Res. 2012;18(15):4183–90.

    Article  PubMed  CAS  Google Scholar 

  47. Jaccard A, Gachard N, Marin B, et al. Efficacy of L-asparaginase with methotrexate and dexamethasone (AspaMetDex regimen) in patients with refractory or relapsing extranodal NK/T-cell lymphoma, a phase 2 study. Blood. 2011;117(6):1834–9.

    Article  PubMed  CAS  Google Scholar 

  48. Wang ZY, Liu QF, Wang H, et al. Clinical implications of plasma Epstein-Barr virus DNA in early-stage extranodal nasal-type NK/T-cell lymphoma patients receiving primary radiotherapy. Blood. 2012;120(10):2003–10.

    Article  PubMed  CAS  Google Scholar 

  49. Young L, Alfieri C, Hennessy K, et al. Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 1989;321(16):1080–5.

    Article  PubMed  CAS  Google Scholar 

  50. Kimura H, Miyake K, Yamauchi Y, et al. Identification of Epstein-Barr virus (EBV)-infected lymphocyte subtypes by flow cytometric in situ hybridization in EBV-associated lymphoproliferative diseases. J Infect Dis. 2009;200(7):1078–87.

    Article  PubMed  CAS  Google Scholar 

  51. Leight ER, Sugden B. EBNA-1: a protein pivotal to latent infection by Epstein-Barr virus. Rev Med Virol. 2000;10(2):83–100.

    Article  PubMed  CAS  Google Scholar 

  52. Humme S, Reisbach G, Feederle R, et al. The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci U S A. 2003;100(19):10989–94.

    Article  PubMed  CAS  Google Scholar 

  53. Gruhne B, Sompallae R, Marescotti D, et al. The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A. 2009;106(7):2313–8.

    Article  PubMed  CAS  Google Scholar 

  54. Kennedy G, Komano J, Sugden B. Epstein-Barr virus provides a survival factor to Burkitt's lymphomas. Proc Natl Acad Sci U S A. 2003;100(24):14269–74.

    Article  PubMed  CAS  Google Scholar 

  55. Ian MX, Lan SZ, Cheng ZF, et al. Suppression of EBNA1 expression inhibits growth of EBV-positive NK/T cell lymphoma cells. Cancer Biol Ther. 2008;7(10):1602–6.

    Article  PubMed  CAS  Google Scholar 

  56. Huen DS, Henderson SA, Croom-Carter D, Rowe M. The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 1995;10(3):549–60.

    PubMed  CAS  Google Scholar 

  57. Henderson S, Rowe M, Gregory C, et al. Induction of bcl-2 expression by Epstein-Barr virus Latent Membrane Protein-1 protects infected B cells from programmed cell death. Cell. 1991;65:1107–15.

    Article  PubMed  CAS  Google Scholar 

  58. Fukuda M, Longnecker R. Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. J Virol. 2004;78(4):1697–705.

    Article  PubMed  CAS  Google Scholar 

  59. Harabuchi Y, Imai S, Wakashima J, et al. Nasal T-cell lymphoma causally associated with Epstein-Barr virus: clinicopathologic, phenotypic, and genotypic studies. Cancer. 1996;77(10):2137–49.

    Article  PubMed  CAS  Google Scholar 

  60. Lee DY, Sugden B. The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood. 2008;111(4):2280–9.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang Y, Nagata H, Ikeuchi T, et al. Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions. Br J Haematol. 2003;121(5):805–14.

    Article  PubMed  Google Scholar 

  62. Nagata H, Konno A, Kimura N, et al. Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus. Blood. 2001;97(3):708–13.

    Article  PubMed  CAS  Google Scholar 

  63. Takahara M, Kis LL, Nagy N, et al. Concomitant increase of LMP1 and CD25 (IL-2-receptor α) expression induced by IL-10 in the EBV-positive NK lines SNK6 and KAI3. I J Cancer. 2006;119(12):2775–83.

    CAS  Google Scholar 

  64. Dybkaer K, Iqbal J, Zhou G, et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics. 2007;8:230.

    Article  PubMed  Google Scholar 

  65. Chen H, Lee JM, Zong Y, et al. Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol. 2001;75(6):2929–37.

    Article  PubMed  CAS  Google Scholar 

  66. Coppo P, Gouilleux-Gruart V, Huang Y, et al. STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia. 2009;23(9):1667–78.

    Article  PubMed  CAS  Google Scholar 

  67. Noguchi T, Ikeda K, Yamamoto K, et al. Antisense oligodeoxynucleotides to latent membrane protein 1 induce growth inhibition, apoptosis and Bcl-2 suppression in Epstein-Barr virus (EBV)-transformed B-lymphoblastoid cells, but not in EBV-positive natural killer cell lymphoma cells. Br J Haematol. 2001;114(1):84–92.

    Article  PubMed  CAS  Google Scholar 

  68. Kanemitsu N, Isobe Y, Masuda A, et al. Expression of Epstein-Barr virus-encoded proteins in extranodal NK/T-cell Lymphoma, nasal type (ENKL): differences in biologic and clinical behaviors of LMP1-positive and -negative ENKL. Clin Cancer Res. 2012;18(8):2164–72. In this study 30 patients of ENKTL were evaluated for LMP1 expression by immunohistochemistry, of which 70% were positive. Interestingly, the authors showed that expression of LMP1 was significantly associated with localised disease and a favourable prognosis. This observation needs further validation, but suggests important viral/cellular complementation and potentially a role for microenvirnomental stimuli of viral gene expression.

    Article  PubMed  CAS  Google Scholar 

  69. Rowe M, Khanna R, Jacob CA, et al. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol. 1995;25(5):1374–84.

    Article  PubMed  CAS  Google Scholar 

  70. Wang F, Gregory C, Sample C, et al. Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 1990;64(5):2309–18.

    PubMed  CAS  Google Scholar 

  71. Sample J, Liebowitz D, Kieff E. Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 1989;63(2):933–7.

    PubMed  CAS  Google Scholar 

  72. Brielmeier M, Mautner J, Laux G, Hammerschmidt W. The latent membrane protein 2 gene of Epstein-Barr virus is important for efficient B cell immortalization. J Gen Virol. 1996;77(Pt 11):2807–18.

    Article  PubMed  CAS  Google Scholar 

  73. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9(3):405–11.

    Article  PubMed  CAS  Google Scholar 

  74. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110(10):3715–21.

    Article  PubMed  CAS  Google Scholar 

  75. Pang MF, Lin KW, Peh SC. The signaling pathways of Epstein-Barr virus-encoded latent membrane protein 2A (LMP2A) in latency and cancer. Cell Mol Biol Lett. 2009;14(2):222–47.

    Article  PubMed  CAS  Google Scholar 

  76. Bollard CM, Gottschalk S, Leen AM, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood. 2007;110(8):2838–45.

    Article  PubMed  CAS  Google Scholar 

  77. Fox CP, Haigh TA, Taylor GS, et al. A novel latent membrane 2 transcript expressed in Epstein-Barr virus-positive NK- and T-cell lymphoproliferative disease encodes a target for cellular immunotherapy. Blood. 2010;116(19):3695–704. In this study a novel EBV-encoded transcript was identified following an observation that LMP2-specific CD8+ T cells recognized and killed ENKTL cell lines, notwithstanding an apparent absence of conventional LMP2 transcripts or protein. These data implicate a truncated LMP2 protein in ENKTL pathogenesis and support LMP2 as an appropriate target for adoptive cellular immunotherapy.

    Article  PubMed  CAS  Google Scholar 

  78. Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. EMBO J. 2002;21(5):954–65.

    Article  PubMed  CAS  Google Scholar 

  79. Wu Y, Maruo S, Yajima M, et al. Epstein-Barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J Virol. 2007;81(20):11236–45.

    Article  PubMed  CAS  Google Scholar 

  80. Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med. 2009;206(10):2091–9.

    Article  PubMed  CAS  Google Scholar 

  81. Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends Mol Med. 2010;16(6):257–67.

    Article  PubMed  Google Scholar 

  82. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152–7.

    Article  PubMed  Google Scholar 

  83. Riley KJ, Rabinowitz GS, Yario TA, et al. EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO J. 2012;31(9):2207–21.

    Article  PubMed  CAS  Google Scholar 

  84. Ramakrishnan R, Donahue H, Garcia D, et al. Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One. 2011;6(11):e27271.

    Article  PubMed  CAS  Google Scholar 

  85. Lo AK, Dawson CW, Jin D-Y, Lo KW. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol. 2012;227(4):392–403.

    Article  PubMed  CAS  Google Scholar 

  86. Su IJ, Hsieh HC, Lin KH, et al. Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood. 1991;77(4):799–808.

    PubMed  CAS  Google Scholar 

  87. Richel DJ, Lepoutre JM, Kapsenberg JG, et al. Epstein-Barr virus in a CD8-positive T-cell lymphoma. Am J Pathol. 1990;136(5):1093–9.

    PubMed  CAS  Google Scholar 

  88. Ott G, Ott MM, Feller AC, et al. Prevalence of Epstein-Barr virus DNA in different T-cell lymphoma entities in a European population. Int J Cancer. 1992;51(4):562–7.

    Article  PubMed  CAS  Google Scholar 

  89. Teramoto N, Sarker AB, Tonoyama Y, et al. Epstein-Barr virus infection in the neoplastic and nonneoplastic cells of lymphoid malignancies. Cancer. 1996;77(11):2339–47.

    Article  PubMed  CAS  Google Scholar 

  90. Hamilton-Dutoit SJ, Pallesen G. A survey of Epstein-Barr virus gene expression in sporadic non-Hodgkin's lymphomas. Detection of Epstein-Barr virus in a subset of peripheral T-cell lymphomas. Am J Pathol. 1992;140(6):1315–25.

    PubMed  CAS  Google Scholar 

  91. Dupuis J, Emile JF, Mounier N, et al. Prognostic significance of Epstein-Barr virus in nodal peripheral T-cell lymphoma, unspecified: A Groupe d'Etude des Lymphomes de l'Adulte (GELA) study. Blood. 2006;108(13):4163–9.

    Article  PubMed  CAS  Google Scholar 

  92. Hirose Y, Masaki Y, Sawaki T, et al. Association of Epstein-Barr virus with human immunodeficiency virus-negative peripheral T-cell lymphomas in Japan. Eur J Haematol. 2006;76(2):109–18.

    Article  PubMed  CAS  Google Scholar 

  93. Bornkamm GW, Stein H, Lennert K, et al. Attempts to demonstrate virus-specific sequences in human tumors. IV. EB viral DNA in European Burkitt lymphoma and immunoblastic lymphadenopathy with excessive plasmacytosis. Int J Cancer. 1976;17(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  94. Weiss L, Jaffe E, Liu X, et al. Detection and localization of Epstein-Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy-like lymphoma. Blood. 1992;79(7):1789–95.

    PubMed  CAS  Google Scholar 

  95. Brauninger A, Spieker T, Willenbrock K, et al. Survival and clonal expansion of mutating "forbidden" (immunoglobulin receptor-deficient) epstein-barr virus-infected b cells in angioimmunoblastic t cell lymphoma. J Exp Med. 2001;194(7):927–40.

    Article  PubMed  CAS  Google Scholar 

  96. Zettl A, Lee SS, Rudiger T, et al. Epstein-Barr virus-associated B-cell lymphoproliferative disorders in angloimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma, unspecified. Am J Clin Pathol. 2002;117(3):368–79.

    Article  PubMed  Google Scholar 

  97. Herling M, Rassidakis GZ, Jones D, et al. Absence of Epstein-Barr virus in anaplastic large cell lymphoma: A study of 64 cases classified according to World Health Organization criteria. Hum Pathol. 2004;35(4):455–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

L. George: grant from Cancer Research UK; M. Rowe: grant from Leukemia Research Fund UK, Cancer Research UK, and Gregor McKay Fund (a Guy’s and St. Thomas’ Charity); C. Fox: grant from Leukemia Research Fund UK and Gregor McKay Fund (a Guy’s and St. Thomas’ Charity).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher P. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, L.C., Rowe, M. & Fox, C.P. Epstein-Barr Virus and the Pathogenesis of T and NK Lymphoma: a Mystery Unsolved. Curr Hematol Malig Rep 7, 276–284 (2012). https://doi.org/10.1007/s11899-012-0136-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-012-0136-z

Keywords

Navigation