Skip to main content

Advertisement

Log in

Cardiac Rehab for Functional Improvement

  • Ethics/Palliative Care (S Fedson, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiac Rehabilitation (CR) was originally designed to return patients to their prior level of functioning after myocardial infarction (MI). Research has since revealed the mortality benefit of CR, and CR has been given a class 1A recommendation by the American Heart Association/American College of Cardiology (AHA/ACC). In this review, we shift our focus back to function and highlight the most recent research on the functional benefits of CR in a broad range of cardiac diseases and conditions.

Recent Findings

Currently, CR is indicated for patients with coronary artery disease (CAD), heart failure with reduced ejection fraction (HFrEF), peripheral arterial disease (PAD), transcatheter aortic valve replacement (TAVR), left ventricular assist devices (LVADs), and cardiac transplant. Among patients with those conditions, CR has been shown to improve exercise capacity, cognition, mental health, and overall quality of life.

Summary

As survival of cardiac diseases increases, CR emerges as an increasingly important tool to lend quality to patients’ lives and therefore give meaning to survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pashkow FJ. Issues in contemporary cardiac rehabilitation: a historical perspective. J Am Coll Cardiol. 1993;21:822–34.

    CAS  PubMed  Google Scholar 

  2. Hellerstein HK, Ford AB. Rehabilitation of the cardiac patient. J Am Med Assoc. 1957;164:225–31.

    CAS  PubMed  Google Scholar 

  3. FastStats (2020) https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm. Accessed 25 Feb 2020.

  4. The top 10 causes of death. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 25 Feb 2020.

  5. Balady GJ, Fletcher BJ, Froelicher ES, Hartley LH, Krauss RM, Oberman A, et al. Cardiac rehabilitation programs. Circulation. 1994;90:1602–7.

    Google Scholar 

  6. Horgan J, Bethell H, Carson P, Davidson C, Julian D, Mayou RA, et al. Working party report on cardiac rehabilitation. Br Heart J. 1992;67:412–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson L, Oldridge N, Thompson DR, Zwisler A-D, Rees K, Martin N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol. 2016;67:1–12.

    PubMed  Google Scholar 

  8. Rauch B, Davos CH, Doherty P, Saure D, Metzendorf M-I, Salzwedel A, et al. The prognostic effect of cardiac rehabilitation in the era of acute revascularisation and statin therapy: a systematic review and meta-analysis of randomized and non-randomized studies--the cardiac rehabilitation outcome study (CROS). Eur J Prev Cardiol. 2016;23:1914–39.

    PubMed  PubMed Central  Google Scholar 

  9. de Vries H, Kemps HMC, van Engen-Verheul MM, Kraaijenhagen RA, Peek N. Cardiac rehabilitation and survival in a large representative community cohort of Dutch patients. Eur Heart J. 2015;36:1519–28.

    PubMed  Google Scholar 

  10. Carlson JJ, Johnson JA, Franklin BA, VanderLaan RL. Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am J Cardiol. 2000;86:17–23.

    CAS  PubMed  Google Scholar 

  11. Smith SC, Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update. Circulation. 2011;124:2458–73.

    PubMed  Google Scholar 

  12. Freeman AM, Taub PR, Lo HC, Ornish D. Intensive cardiac rehabilitation: an underutilized resource. Curr Cardiol Rep. 2019;21:19.

    PubMed  Google Scholar 

  13. Pritikin Longevity Center. www.Pritikin.com. Accessed 25 Feb 2020.

  14. Smart N, Marwick TH. Exercise training for patients with heart failure: a systematic review of factors that improve mortality and morbidity. Am J Med. 2004;116:693–706.

    PubMed  Google Scholar 

  15. Ornish D (2017) Ornish lifestyle medicine.

  16. •• Ornish D, Scherwitz LW, Billings JH, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA. 1998;280:2001–7 This randomized clinical trial illustrates that adherence to an intensive cardiac rehabilitation program is not only feasible, but can reverse coronary artery percent diameter stenosis and reduce anginal episodes.

    CAS  PubMed  Google Scholar 

  17. • Williams D, Mulkareddy V, Montgomery K, et al. Abstract P325: Effectiveness of the First Outpatient Pritikin Intensive Cardiac Rehabilitation (ICR) Program. Circulation. 2019;139:–AP325 In this observational study, 140 patients participated in Pritikin intensive cardiac rehabilitation in the outpatient setting. Patients showed significant improvements in BMI, weight, whole-body fat %, trunk fat %, 6-minute walk distance, and hand grip strength. Improvements were also observed for waist circumference, total cholesterol, and LDL cholesterol.

  18. Rognmo Ø, Moholdt T, Bakken H, Hole T, Mølstad P, Myhr NE, et al. Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126:1436–40.

    PubMed  Google Scholar 

  19. Guddeti RR, Dang G, Williams MA, Alla VM. Role of yoga in cardiac disease and rehabilitation. J Cardiopulm Rehabil Prev. 2019;39:146–52.

    PubMed  Google Scholar 

  20. Kiecolt-Glaser JK, Christian LM, Andridge R, Hwang BS, Malarkey WB, Belury MA, et al. Adiponectin, leptin, and yoga practice. Physiol Behav. 2012;107:809–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sandesara PB, Lambert CT, Gordon NF, Fletcher GF, Franklin BA, Wenger NK, et al. Cardiac rehabilitation and risk reduction: time to “rebrand and reinvigorate.”. J Am Coll Cardiol. 2015;65:389–95.

    PubMed  Google Scholar 

  22. Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol. 1996;28:1652–60.

    CAS  PubMed  Google Scholar 

  23. Dimmeler S, Zeiher AM. Exercise and cardiovascular health. Circulation. 2003;107:3118–20.

    PubMed  Google Scholar 

  24. Kendziorra K, Walther C, Foerster M, Möbius-Winkler S, Conradi K, Schuler G, et al. Changes in myocardial perfusion due to physical exercise in patients with stable coronary artery disease. Eur J Nucl Med Mol Imaging. 2005;32:813–9.

    PubMed  Google Scholar 

  25. Kasapis C, Thompson PD. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J Am Coll Cardiol. 2005;45:1563–9.

    CAS  PubMed  Google Scholar 

  26. Koller A, Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 2000;101:E164.

    CAS  PubMed  Google Scholar 

  27. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97:141–7.

    PubMed  Google Scholar 

  28. Iellamo F, Legramante JM, Massaro M, Raimondi G, Galante A. Effects of a residential exercise training on BAROREFLEX sensitivity and heart rate variability in patients with coronary artery disease: a randomized, controlled study. J Cardpulm Rehabil. 2001;21:116.

    Google Scholar 

  29. Attaix D, Ventadour S, Codran A, Béchet D, Taillandier D, Combaret L. The ubiquitin–proteasome system and skeletal muscle wasting. Essays Biochem. 2005;41:173.

    CAS  PubMed  Google Scholar 

  30. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6:197–207.

    PubMed  PubMed Central  Google Scholar 

  31. Murton AJ, Constantin D, Greenhaff PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 2008;1782:730–43.

    CAS  PubMed  Google Scholar 

  32. Carmeli E, Aizenbud D, Rom O. How Do Skeletal Muscles Die? An Overview. Adv Exp Med Biol. 2015;861:99–111.

    PubMed  Google Scholar 

  33. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodriguez J, Vernus B, Chelh I, Cassar-Malek I, Gabillard JC, Hadj Sassi A, et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell Mol Life Sci. 2014;71:4361–71.

    CAS  PubMed  Google Scholar 

  35. Schiaffino S, Dyar KA, Ciciliot S, Blaauw B, Sandri M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294–314.

    CAS  PubMed  Google Scholar 

  36. Gielen S, Sandri M, Kozarez I, Kratzsch J, Teupser D, Thiery J, et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circulation. 2012;125:2716–27.

    CAS  PubMed  Google Scholar 

  37. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem. 2002;277:49831–40.

    CAS  PubMed  Google Scholar 

  38. Lenk K, Erbs S, Höllriegel R, Beck E, Linke A, Gielen S, et al. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure. Eur J Prev Cardiol. 2012;19:404–11.

    PubMed  Google Scholar 

  39. Zoll J, Steiner R, Meyer K, Vogt M, Hoppeler H, Flück M. Gene expression in skeletal muscle of coronary artery disease patients after concentric and eccentric endurance training. Eur J Appl Physiol. 2006;96:413–22.

    CAS  PubMed  Google Scholar 

  40. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 2013;18:607–22.

    CAS  PubMed  Google Scholar 

  41. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296:C1258–70.

    CAS  PubMed  Google Scholar 

  42. Bowen TS, Rolim NPL, Fischer T, Baekkerud FH, Medeiros A, Werner S, et al. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle. Eur J Heart Fail. 2015;17:263–72.

    CAS  PubMed  Google Scholar 

  43. Hammond MD, Bauer KA, Sharp JT, Rocha RD. Respiratory muscle strength in congestive heart failure. Chest. 1990;98:1091–4.

    CAS  PubMed  Google Scholar 

  44. Hart N, Kearney MT, Pride NB, Green M, Lofaso F, Shah AM, et al. Inspiratory muscle load and capacity in chronic heart failure. Thorax. 2004;59:477–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mancini DM, Henson D, LaManca J, Levine S. Respiratory muscle function and dyspnea in patients with chronic congestive heart failure. Circulation. 1992;86:909–18.

    CAS  PubMed  Google Scholar 

  46. Cahalin L. Inspiratory muscle weakness and dyspnea in chronic heart failure. Cardiopulmonary Physical Therapy Journal. 1992;3:11.

    Google Scholar 

  47. Tikunov BA, Mancini D, Levine S. Changes in myofibrillar protein composition of human diaphragm elicited by congestive heart failure. J Mol Cell Cardiol. 1996;28:2537–41.

    CAS  PubMed  Google Scholar 

  48. Tikunov B, Levine S, Mancini D. Chronic congestive heart failure elicits adaptations of endurance exercise in diaphragmatic muscle. Circulation. 1997;95:910–6.

    CAS  PubMed  Google Scholar 

  49. Bowen TS, Mangner N, Werner S, et al. Diaphragm muscle weakness in mice is early-onset post-myocardial infarction and associated with elevated protein oxidation. J Appl Physiol. 2015;118:11–9.

    CAS  PubMed  Google Scholar 

  50. Coirault C, Guellich A, Barbry T, Samuel JL, Riou B, Lecarpentier Y. Oxidative stress of myosin contributes to skeletal muscle dysfunction in rats with chronic heart failure. Am J Physiol Heart Circ Physiol. 2007;292:H1009–17.

    CAS  PubMed  Google Scholar 

  51. Laitano O, Ahn B, Patel N, Coblentz PD, Smuder AJ, Yoo J-K, et al. Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J Appl Physiol. 2016;120:733–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mangner N, Linke A, Oberbach A, Kullnick Y, Gielen S, Sandri M, et al. Exercise training prevents TNF-α induced loss of force in the diaphragm of mice. PLoS One. 2013;8:e52274.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. de Souza PAT, de Souza RWA, Soares LC, Piedade WP, Campos DH, Carvalho RF, et al. Aerobic training attenuates nicotinic acethylcholine receptor changes in the diaphragm muscle during heart failure. Histol Histopathol. 2015;30:801–11.

    PubMed  Google Scholar 

  54. CDC (2019) Heart Disease Facts | cdc.gov. In: Centers for Disease Control and Prevention. https://www.cdc.gov/heartdisease/facts.htm. Accessed 26 Feb 2020.

  55. Avila A, Claes J, Buys R, Azzawi M, Vanhees L, Cornelissen V. Home-based exercise with telemonitoring guidance in patients with coronary artery disease: does it improve long-term physical fitness? Eur J Prev Cardiol. 2019:2047487319892201.

  56. Williams MA, Maresh CM, Esterbrooks DJ, Harbrecht JJ, Sketch MH. Early exercise training in patients older than age 65 years compared with that in younger patients after acute myocardial infarction or coronary artery bypass grafting. Am J Cardiol. 1985;55:263–6.

    CAS  PubMed  Google Scholar 

  57. Lavie CJ, Milani RV. Effects of cardiac rehabilitation programs on exercise capacity, coronary risk factors, behavioral characteristics, and quality of life in a large elderly cohort. Am J Cardiol. 1995;76:177–9.

    CAS  PubMed  Google Scholar 

  58. Lavie CJ, Milani RV, Littman AB. Benefits of cardiac rehabilitation and exercise training in secondary coronary prevention in the elderly. J Am Coll Cardiol. 1993;22:678–83.

    CAS  PubMed  Google Scholar 

  59. Ståhle A, Mattsson E, Rydén L, Unden A, Nordlander R. Improved physical fitness and quality of life following training of elderly patients after acute coronary events. A 1 year follow-up randomized controlled study. Eur Heart J. 1999;20:1475–84.

    PubMed  Google Scholar 

  60. Hung C, Daub B, Black B, Welsh R, Quinney A, Haykowsky M. Exercise training improves overall physical fitness and quality of life in older women with coronary artery disease. Chest. 2004;126:1026–31.

    PubMed  Google Scholar 

  61. Audelin MC, Savage PD, Ades PA. Exercise-based cardiac rehabilitation for very old patients (> or =75 years): focus on physical function. J Cardiopulm Rehabil Prev. 2008;28:163–73.

    PubMed  Google Scholar 

  62. Foxwell R, Morley C, Frizelle D. Illness perceptions, mood and quality of life: a systematic review of coronary heart disease patients. J Psychosom Res. 2013;75:211–22.

    PubMed  Google Scholar 

  63. Milani RV, Lavie CJ, Mehra MR, Ventura HO. Impact of exercise training and depression on survival in heart failure due to coronary heart disease. Am J Cardiol. 2011;107:64–8.

    PubMed  Google Scholar 

  64. Alagiakrishnan K, Mah D, Gyenes G. Cardiac rehabilitation and its effects on cognition in patients with coronary artery disease and heart failure. Expert Rev Cardiovasc Ther. 2018;16:645–52.

    CAS  PubMed  Google Scholar 

  65. • Badrov MB, Wood KN, Sophie L, et al. Effects of 6 Months of Exercise-Based Cardiac Rehabilitation on Autonomic Function and Neuro-Cardiovascular Stress Reactivity in Coronary Artery Disease Patients. J Am Heart Assoc. 2019;8:e012257 In this observational study, 22 patients with coronary artery disease (CAD) demonstrated reduced resting blood pressure, muscle sympathetic nerve activity burst frequency and burse incidence, and improved sympathetic baroreflex sensitivity. These mechanisms might be in part responsible for the improved outcomes that have been demonstrated in CAD patients after cardiac rehabilitation.

    PubMed  PubMed Central  Google Scholar 

  66. Mendelson M, Inami T, Lyons O, Alshaer H, Marzolini S, Oh P, et al. Long-term effects of cardiac rehabilitation on sleep apnea severity in patients with coronary artery disease. J Clin Sleep Med. 2020;16:65–71.

    PubMed  PubMed Central  Google Scholar 

  67. Bordoni B, Marelli F, Morabito B, Sacconi B. Depression and anxiety in patients with chronic heart failure. Futur Cardiol. 2018;14:115–9.

    CAS  Google Scholar 

  68. •• Flynn KE, Piña IL, Whellan DJ, et al. Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1451–9 HF-ACTION is a large-scale clinical trial that examined the health status of 2331 individuals primarily with systolic heart failure NYHA class II-III and demonstrated a statistically significant and durable benefit to quality of life for patients who had participated in aerobic exercise training plus evidence-based medical therapy compared to medical therapy alone.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Taylor RS, Long L, Mordi IR, Madsen MT, Davies EJ, Dalal H, et al. Exercise-based rehabilitation for heart failure: Cochrane systematic review, meta-analysis, and trial sequential analysis. JACC Heart Fail. 2019;7:691–705.

    PubMed  Google Scholar 

  70. Karapolat H, Engin C, Eroglu M, Yagdi T, Zoghi M, Nalbantgil S, et al. Efficacy of the cardiac rehabilitation program in patients with end-stage heart failure, heart transplant patients, and left ventricular assist device recipients. Transplant Proc. 2013;45:3381–5.

    CAS  PubMed  Google Scholar 

  71. Jones WS, Schmit KM, Vemulapalli S, et al. Treatment strategies for patients with peripheral artery disease. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  72. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;69:1465–508.

    PubMed  Google Scholar 

  73. Franz RW, Garwick T, Haldeman K. Initial results of a 12-week, institution-based, supervised exercise rehabilitation program for the management of peripheral arterial disease. Vascular. 2010;18:325–35.

    PubMed  Google Scholar 

  74. Gibellini R, Fanello M, Bardile AF, Salerno M, Aloi T. Exercise training in intermittent claudication. Int Angiol. 2000;19:8–13.

    CAS  PubMed  Google Scholar 

  75. Adamopoulos S, Corrà U, Laoutaris ID, et al. Exercise training in patients with ventricular assist devices: a review of the evidence and practical advice. A position paper from the Committee on Exercise Physiology and Training and the Committee of Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:3–13.

    PubMed  Google Scholar 

  76. • Kerrigan DJ, Williams CT, Ehrman JK, et al. Cardiac rehabilitation improves functional capacity and patient-reported health status in patients with continuous-flow left ventricular assist devices: the Rehab-VAD randomized controlled trial. JACC Heart Fail. 2014;2:653–9 This study highlights the impact of cardiac rehabilitation on patients with newly implanted LVADs, demonstrating improvements in peak oxygen intake, time and distance on the treadmill, and patient perception of health.

    PubMed  Google Scholar 

  77. Hildebrandt A, Willemsen D, Reiss N, Bartsch P, Schmidt T, Bjarnason-Wehrens B. Characteristics, therapeutic needs, and scope of patients with a continuous-flow left ventricular device entering cardiac rehabilitation: a retrospective analysis. J Cardiopulm Rehabil Prev. 2019;39:91–6.

    PubMed  Google Scholar 

  78. Smith KJ, Moreno-Suarez I, Scheer A, Dembo L, Naylor LH, Maiorana AJ, et al. Cerebral blood flow responses to exercise are enhanced in left ventricular assist device patients after an exercise rehabilitation program. J Appl Physiol. 2020;128:108–16.

    PubMed  Google Scholar 

  79. Rossi Ferrario S, Panzeri A. Exploring illness denial of LVAD patients in cardiac rehabilitation and their caregivers: a preliminary study. Artif Organs. 2020. https://doi.org/10.1111/aor.13630.

  80. Hollenberg SM, Klein LW, Parrillo JE, Scherer M, Burns D, Tamburro P, et al. Changes in coronary endothelial function predict progression of allograft vasculopathy after heart transplantation. J Heart Lung Transplant. 2004;23:265–71.

    PubMed  Google Scholar 

  81. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32:951–64.

    PubMed  Google Scholar 

  82. Anderson L, Nguyen TT, Dall CH, Burgess L, Bridges C, Taylor RS. Exercise-based cardiac rehabilitation in heart transplant recipients. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.cd012264.pub2.

  83. Karapolat H, Eyigor S, Durmaz B, Yagdi T, Nalbantgil S, Karakula S. The relationship between depressive symptoms and anxiety and quality of life and functional capacity in heart transplant patients. Clin Res Cardiol. 2007;96:593–9.

    CAS  PubMed  Google Scholar 

  84. Ulubay G, Ulasli SS, Sezgin A, Haberal M. Assessing exercise performance after heart transplantation. Clin Transpl. 2007;21:398–404.

    Google Scholar 

  85. Buendía F, Almenar L, Martínez-Dolz L, Sánchez-Lázaro I, Navarro J, Agüero J, et al. Relationship between functional capacity and quality of life in heart transplant patients. Transplant Proc. 2011;43:2251–2.

    PubMed  Google Scholar 

  86. Hsu C-J, Chen S-Y, Su S, Yang M-C, Lan C, Chou N-K, et al. The effect of early cardiac rehabilitation on health-related quality of life among heart transplant recipients and patients with coronary artery bypass graft surgery. Transplant Proc. 2011;43:2714–7.

    PubMed  Google Scholar 

  87. Christensen SB, Dall CH, Prescott E, Pedersen SS, Gustafsson F. A high-intensity exercise program improves exercise capacity, self-perceived health, anxiety and depression in heart transplant recipients: a randomized, controlled trial. J Heart Lung Transplant. 2012;31:106–7.

    PubMed  Google Scholar 

  88. Didsbury M, McGee RG, Tong A, Craig JC, Chapman JR, Chadban S, et al. Exercise training in solid organ transplant recipients: a systematic review and meta-analysis. Transplantation. 2013;95:679–87.

    CAS  PubMed  Google Scholar 

  89. Hsieh P-L, Wu Y-T, Chao W-J. Effects of exercise training in heart transplant recipients: a meta-analysis. Cardiology. 2011;120:27–35.

    PubMed  Google Scholar 

  90. Kim CA, Rasania SP, Afilalo J, Popma JJ, Lipsitz LA, Kim DH. Functional status and quality of life after transcatheter aortic valve replacement: a systematic review. Ann Intern Med. 2014;160:243–54.

    PubMed  PubMed Central  Google Scholar 

  91. Paradis J-M, Fried J, Nazif T, Kirtane A, Harjai K, Khalique O, et al. Aortic stenosis and coronary artery disease: what do we know? What don’t we know? A comprehensive review of the literature with proposed treatment algorithms. Eur Heart J. 2014;35:2069–82.

    PubMed  Google Scholar 

  92. Anayo L, Rogers P, Long L, Dalby M, Taylor R. Exercise-based cardiac rehabilitation for patients following open surgical aortic valve replacement and transcatheter aortic valve implant: a systematic review and meta-analysis. Open Heart. 2019;6:e000922.

    PubMed  PubMed Central  Google Scholar 

  93. Zanettini R, Gatto G, Mori I, Pozzoni MB, Pelenghi S, Martinelli L, et al. Cardiac rehabilitation and mid-term follow-up after transcatheter aortic valve implantation. J Geriatr Cardiol. 2014;11:279–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380:1695–705.

    PubMed  Google Scholar 

  95. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, et al. Transcatheter aortic-valve replacement with a self-expanding valve in Low-risk patients. N Engl J Med. 2019;380:1706–15.

    PubMed  Google Scholar 

  96. Gary R, Lee SYS. Physical function and quality of life in older women with diastolic heart failure: effects of a progressive walking program on sleep patterns. Prog Cardiovasc Nurs. 2007;22:72–80.

    PubMed  Google Scholar 

  97. Pandey A, Darden D, Berry JD. Low fitness in midlife: a novel therapeutic target for heart failure with preserved ejection fraction prevention. Prog Cardiovasc Dis. 2015;58:87–93.

    PubMed  Google Scholar 

  98. Smart N, Haluska B, Jeffriess L, Marwick TH. Exercise training in systolic and diastolic dysfunction: effects on cardiac function, functional capacity, and quality of life. Am Heart J. 2007;153:530–6.

    PubMed  Google Scholar 

  99. Pandey A, Parashar A, Kumbhani D, Agarwal S, Garg J, Kitzman D, et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail. 2015;8:33–40.

    PubMed  Google Scholar 

  100. Edelmann F, Bobenko A, Gelbrich G, Hasenfuss G, Herrmann-Lingen C, Duvinage A, et al. Exercise training in diastolic heart failure (ex-DHF): rationale and design of a multicentre, prospective, randomized, controlled, parallel group trial. Eur J Heart Fail. 2017;19:1067–74.

    PubMed  Google Scholar 

  101. Edelmann F, Gelbrich G, Düngen H-D, Fröhling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the ex-DHF (exercise training in diastolic heart failure) pilot study. J Am Coll Cardiol. 2011;58:1780–91.

    PubMed  Google Scholar 

  102. Lam CSP, Brutsaert DL. Endothelial dysfunction: a pathophysiologic factor in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2012;60:1787–9.

    PubMed  Google Scholar 

  103. Borlaug BA, Nishimura RA, Sorajja P, Lam CSP, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    PubMed  PubMed Central  Google Scholar 

  104. Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol. 2012;60:1778–86.

    PubMed  Google Scholar 

  105. Brunner H, Cockcroft JR, Deanfield J, et al. Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:233–46.

    CAS  PubMed  Google Scholar 

  106. Campbell DJ, Somaratne JB, Prior DL, Yii M, Kenny JF, Newcomb AE, et al. Obesity is associated with lower coronary microvascular density. PLoS One. 2013;8:e81798.

    PubMed  PubMed Central  Google Scholar 

  107. Hoenig MR, Bianchi C, Rosenzweig A, Sellke FW. The cardiac microvasculature in hypertension, cardiac hypertrophy and diastolic heart failure. Curr Vasc Pharmacol. 2008;6:292–300.

    CAS  PubMed  Google Scholar 

  108. Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    PubMed  Google Scholar 

  109. Tolahunase M, Sagar R, Dada R. Impact of yoga and meditation on cellular aging in apparently healthy individuals: a prospective, open-label single-arm exploratory study. Oxidative Med Cell Longev. 2017;2017:7928981.

    Google Scholar 

  110. Cahn BR, Goodman MS, Peterson CT, Maturi R, Mills PJ. Yoga, meditation and mind-body health: increased BDNF, cortisol awakening response, and altered inflammatory marker expression after a 3-month yoga and meditation retreat. Front Hum Neurosci. 2017;11:315.

    PubMed  PubMed Central  Google Scholar 

  111. Sureda A, Bibiloni MDM, Julibert A, Bouzas C, Argelich E, Llompart I, et al. Adherence to the Mediterranean diet and inflammatory markers. Nutrients. 2018;10. https://doi.org/10.3390/nu10010062.

  112. Martin AM, Woods CB. What sustains long-term adherence to structured physical activity after a cardiac event? J Aging Phys Act. 2012;20:135–47.

    PubMed  Google Scholar 

  113. Benrud-Larson LM, Dewar MS, Sandroni P, Rummans TA, Haythornthwaite JA, Low PA. Quality of life in patients with postural tachycardia syndrome. Mayo Clin Proc. 2002;77:531–7.

    PubMed  Google Scholar 

  114. Zadourian A, Doherty TA, Swiatkiewicz I, Taub PR. Postural orthostatic tachycardia syndrome: prevalence, pathophysiology, and management. Drugs. 2018;78:983–94.

    PubMed  Google Scholar 

  115. Kizilbash SJ, Ahrens SP, Bruce BK, Chelimsky G, Driscoll SW, Harbeck-Weber C, et al. Adolescent fatigue, POTS, and recovery: a guide for clinicians. Curr Probl Pediatr Adolesc Health Care. 2014;44:108–33.

    PubMed  PubMed Central  Google Scholar 

  116. Fu Q, Vangundy TB, Shibata S, Auchus RJ, Williams GH, Levine BD. Exercise training versus propranolol in the treatment of the postural orthostatic tachycardia syndrome. Hypertension. 2011;58:167–75.

    CAS  PubMed  Google Scholar 

  117. Shibata S, Fu Q, Bivens TB, Hastings JL, Wang W, Levine BD. Short-term exercise training improves the cardiovascular response to exercise in the postural orthostatic tachycardia syndrome. J Physiol. 2012;590:3495–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Galbreath MM, Shibata S, VanGundy TB, Okazaki K, Fu Q, Levine BD. Effects of exercise training on arterial-cardiac baroreflex function in POTS. Clin Auton Res. 2011;21:73–80.

    PubMed  Google Scholar 

  119. George SA, Bivens TB, Howden EJ, Saleem Y, Galbreath MM, Hendrickson D, et al. The international POTS registry: evaluating the efficacy of an exercise training intervention in a community setting. Heart Rhythm. 2016;13:943–50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pam Taub.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ethics/Palliative Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epstein, E., Rosander, A., Pazargadi, A. et al. Cardiac Rehab for Functional Improvement. Curr Heart Fail Rep 17, 161–170 (2020). https://doi.org/10.1007/s11897-020-00462-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00462-2

Keywords

Navigation