Skip to main content

Advertisement

Log in

Potential Expanded Indications for Neprilysin Inhibitors

  • Pharmacologic Therapy (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this article is to review potential expanded indications for neprilysin inhibitors. This article reviews the rationale and design for ongoing and future trials of sacubitril/valsartan in cardiovascular and non-cardiovascular disease.

Recent Findings

Randomized trial data are lacking for use of sacubitril/valsartan in acute heart failure and advanced heart failure. Mechanistic data from animal studies suggest a role for neprilysin inhibition in the treatment of post-myocardial infarction systolic dysfunction and heart failure with preserved ejection fraction. Beyond the cardiovascular system, renal and neurological function may be impacted by neprilysin inhibition. Forthcoming randomized trials will address the clinical impact of sacubitril/valsartan on these conditions.

Summary

Neprilysin inhibition with sacubitril/valsartan offers a new therapeutic strategy with a broad range of potential therapeutic actions. In PARADIGM-HF, the combination of neprilysin and RAAS inhibition was proven to be superior to enalapril for patients with stable NYHA class II–III heart failure and reduced left ventricular ejection fraction. Preliminary data suggests it may also have a role in other cardiovascular and non-cardiovascular disease. Several ongoing and planned studies will determine the extent of its benefit for these other indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Teerlink JR, Bourge RC, Cleland JGF, Jondeau G, Krum H, Metra M, et al. Effects of tezosentan on symptoms. Heart Fail. 2009;298:2009–19.

    Google Scholar 

  2. Prasad SK, Dargie HJ, Smith GC, Barlow MM, Grothues F, Groenning BA, et al. Comparison of the dual receptor endothelin antagonist enrasentan with enalapril in asymptomatic left ventricular systolic dysfunction: a cardiovascular magnetic resonance study. Heart [Internet]. 2006;92:798–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16339819%5, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1860639.

  3. Anand PI, McMurray PJ, Cohn PJN, Konstam PMA, Notter T, Quitzau K, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364:347–54.

    Article  CAS  PubMed  Google Scholar 

  4. Mann DL, McMurray JJV, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109:1594–602.

    Article  CAS  PubMed  Google Scholar 

  5. McMurray JJV, Krum H, Abraham WT, Dickstein K, Køber LV, Desai AS, et al. Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N Engl J Med [Internet]. 2016;374:1521–32. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1514859%5, http://www.ncbi.nlm.nih.gov/pubmed/27043774.

  6. Packer M, Poole-Wilson PA, Armstrong PW, Cleland JG, Horowitz JD, Massie BM, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999;100(23):2312–8. doi:10.1161/01.CIR.100.23.2312.

  7. Konstam MA, Neaton JD, Dickstein K, Drexler H, Komajda M, Martinez FA, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet [Internet]. 2009;374:1840–8. doi:10.1016/S0140-6736(09)61913-9.

    Article  CAS  Google Scholar 

  8. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet. 2003;362(9386):767–71. doi:10.1016/S0140-6736(03)14283-3.

  9. Cohn JN, Tognoni G, Investigators VHFT. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.

    Article  CAS  PubMed  Google Scholar 

  10. Gheorghiade M, Böhm M, Greene SJ, Fonarow GC, Lewis EF, Zannad F, et al. Effect of aliskiren on postdischarge mortality and heart failure readmissions among patients hospitalized for heart failure: the ASTRONAUT randomized trial. JAMA [Internet]. 2013;309:1125–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23478743.

  11. Hata N, Seino Y, Tsutamoto T, Hiramitsu S, Kaneko N, Yoshikawa T, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J [Internet]. 2008;72:1787–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18812677.

  12. Nomura F, Kurobe N, Mori Y, Hikita A, Kawai M, Suwa M, et al. Multicenter prospective investigation on efficacy and safety of carperitide as a first-line drug for acute heart failure syndrome with preserved blood pressure: COMPASS: Carperitide Effects Observed Through Monitoring Dyspnea in Acute Decompensated Heart. Circ J. 2008;72:1777–86.

    Article  CAS  PubMed  Google Scholar 

  13. Matsue Y, Kagiyama N, Yoshida K, Kume T, Okura H, Suzuki M, et al. Carperitide is associated with increased in-hospital mortality in acute heart failure: a propensity score-matched analysis. J Card Fail [Internet]. 2015;21:859–64. doi:10.1016/j.cardfail.2015.05.007.

    Article  CAS  Google Scholar 

  14. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med [Internet]. 2011;365:32–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21732835%5, http://www.nejm.org/doi/abs/10.1056/NEJMoa1100171.

  15. Colucci WS, Elkayam U, Horton DP, Abraham WT, Bourge RC, Johnson AD, et al. Intravenous nesiritide, a natriurietic peptide, in the treatment of decompensated congestive heart failure. N Engl J Med. 2000;343:246–53.

    Article  CAS  PubMed  Google Scholar 

  16. Investigators V. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA J Am Med Assoc. 2015;287:1531–77.

    Google Scholar 

  17. Rademaker MT, Charles CJ, Espiner EA, Nicholls MG, Richards AM, Kosoglou T. Neutral endopeptidase inhibition: augmented atrial and brain natriuretic peptide, haemodynamic and natriuretic responses in ovine heart failure. Clin Sci [Internet]. 1996;91:283 LP-291. Available from: http://www.clinsci.org/content/91/3/283.abstract.

  18. Cruden NLM, Fox KAA, Ludlam CA, Johnston NR, Newby DE. Neutral endopeptidase inhibition augments vascular actions of bradykinin in patients treated with angiotensin-converting enzyme inhibition. Hypertension [Internet]. 2004;44:913 LP-918. Available from: http://hyper.ahajournals.org/content/44/6/913.abstract.

  19. McDowell G, Coutie W, Shaw C, Buchanan KD, Struthers AD, Nicholls DP. The effect of the neutral endopeptidase inhibitor drug, candoxatril, on circulating levels of two of the most potent vasoactive peptides. Br J Clin Pharmacol [Internet]. 1997;43:329–32. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042739/.

  20. Maric C, Zheng W, Walther T. Interactions between angiotensin ll and atrial natriuretic peptide in renomedullary interstitial cells: the role of neutral endopeptidase. Nephron Physiol. 2006;103:p149–56.

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn M. Molecular physiology of natriuretic peptide signalling. Basic Res Cardiol. 2004;99:76–82.

    Article  CAS  PubMed  Google Scholar 

  22. Roques BP, Fournie-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, et al. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature [Internet]. 1980;288:286–8. doi:10.1038/288286a0.

    Article  CAS  Google Scholar 

  23. Ksander GM, Ghai RD, de Jesus R, Diefenbacher C, Yuan A, Berry C, et al. Dicarboxylic acid dipeptide neutral endopeptidase inhibitors. J Med Chem [Internet]. 1995;38:1689–700. doi:10.1021/jm00010a014.

    Article  CAS  Google Scholar 

  24. Cavero PG, Margulies KB, Winaver J, Seymour AA, Delaney NG, Burnett Jr JC. Cardiorenal actions of neutral endopeptidase inhibition in experimental congestive heart failure. Circulation. 1990;82:196–201.

    Article  CAS  PubMed  Google Scholar 

  25. Seymour AA, Asaad MM, Lanoce VM, Langenbacher KM, Fennell SA, Rogers WL. Systemic hemodynamics, renal function and hormonal levels during inhibition of neutral endopeptidase 3.4.24.11 and angiotensin-converting enzyme in conscious dogs with pacing-induced heart failure. J Pharmacol Exp Ther [Internet]. 1993;266:872 LP-883. Available from: http://jpet.aspetjournals.org/content/266/2/872.abstract.

  26. Münzel T, Kurz S, Holtz J, Busse R, Steinhauer H, Just H, et al. Neurohormonal inhibition and hemodynamic unloading during prolonged inhibition of ANF degradation in patients with severe chronic heart failure. Circulation. 1992;86:1089–98.

    Article  PubMed  Google Scholar 

  27. Northridge D, Alabaster C, Connell JC, Dilly S, Lever A, Jardine A, et al. Effects of UK 69 578: a novel atriopeptidase inhibitor. Lancet [Internet]. 1989;334:591–3. Available from: file:// www.sciencedirect.com/science/article/pii/S0140673689907149.

  28. Ferro CJ, Spratt JC, Haynes WG, Webb DJ. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation [Internet]. 1998;97:2323–30. Available from: http://circ.ahajournals.org/content/97/23/2323.short%5, http://circ.ahajournals.org/cgi/doi/10.1161/01.CIR.97.23.2323.

  29. Semenov AG, Katrukha AG. Different susceptibility of B-type natriuretic peptide (BNP) and BNP precursor (proBNP) to cleavage by neprilysin: the N-terminal part does matter. Clin Chem [Internet]. 2016;62:617 LP-622. Available from: http://clinchem.aaccjnls.org/content/62/4/617.abstract.

  30. •• Campbell DJ. Long-term neprilysin inhibition—implications for ARNIs. Nat Rev Cardiol [Internet]. 2016;1–16. Available from: http://www.nature.com/doifinder/10.1038/nrcardio.2016.200. This comprehensive review of the action of neprilysin provides greater breadth and depth for understanding the mechanisms whereby neprilysin may impact human disease in expected and unexpected ways.

  31. Shen R, Sumitomo M, Dai J, Harris A, Kaminetzky D, Gao M, et al. Androgen-induced growth inhibition of androgen receptor expressing androgen-independent prostate cancer cells is mediated by increased levels of neutral endopeptidase. Endocrinology. 2000;141:1699–704.

    CAS  PubMed  Google Scholar 

  32. • Stephen HM, Khoury RJ, Majmudar PR, Blaylock T, Hawkins K, Salama MS, et al. Epigenetic suppression of neprilysin regulates breast cancer invasion. Oncogensis [Internet]. 2016;5:e207–10. doi:10.1038/oncsis.2016.16. In this study of breast cancer cells in vitro, neprilysin expression was found to be decreased compared to normal cells as a result of hypermethylation. Neprilysin was found to regulate cancer cell invasion through negative regulation of endothelin 1. This study suggests further study of neprilysin inhibition and its potential role in potentiating cancer development is warranted.

  33. Meng F, De Morrow S, Venter J, Frampton G, Han Y, Francis H, et al. Overexpression of membrane metalloendopeptidase inhibits substance P stimulation of cholangiocarcinoma growth. Am J Physiol - Gastrointest Liver Physiol [Internet]. 2014;306:G759 LP-G768. Available from: http://ajpgi.physiology.org/content/306/9/G759.abstract.

  34. Terauchi M, Kajiyama H, Shibata K, Ino K, Mizutani S, Kikkawa F. Anti-progressive effect of neutral endopeptidase 24.11 (NEP/CD10) on cervical carcinoma in vitro and in vivo. Oncology [Internet]. 2005;69:52–62. Available from: http://www.karger.com/DOI/10.1159/000087476.

  35. Kajiyama H, Shibata K, Terauchi M, Morita T, Ino K, Mizutani S, et al. Neutral endopeptidase 24.11/CD10 suppresses progressive potential in ovarian carcinoma in vitro and in vivo. Clin Cancer Res [Internet]. 2005;11:1798 LP-1808. Available from: http://clincancerres.aacrjournals.org/content/11/5/1798.abstract.

  36. Seymour AA, Swerdel JN, Abboa-Offei B. Antihypertensive activity during inhibition of neutral endopeptidase and angiotensin converting enzyme. J Cardiovasc Pharmacol. 1991;17:456–65.

    Article  CAS  PubMed  Google Scholar 

  37. Rademaker MT, Charles CJ, Espiner EA, Nicholls MG, Richards AM, Kosoglou T. Combined neutral endopeptidase and angiotensin-converting enzyme inhibition in heart failure: role of natriuretic peptides and angiotensin II. J Cardiovasc Pharmacol. 1998;31:116–25.

    Article  CAS  PubMed  Google Scholar 

  38. Trippodo NC, Fox M, Monticello TM, Panchal BC, Asaad MM. Vasopeptidase inhibition with omapatrilat improves cardiac geometry and survival in cardiomyopathic hamsters more than does ACE inhibition with captopril. J Cardiovasc Pharmacol. 1999;34:782–90.

    Article  CAS  PubMed  Google Scholar 

  39. Campese VM, Lasseter KC, Ferrario CM, Smith WB, Ruddy MC, Grim CE, et al. Omapatrilat versus lisinopril: efficacy and neurohormonal profile in salt-sensitive hypertensive patients. Hypertension. 2001;38:1342–8.

    Article  CAS  PubMed  Google Scholar 

  40. Packer M, Califf RM, Konstam MA, Krum H, McMurray JJ, Rouleau J-L, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106:920–6.

    Article  CAS  PubMed  Google Scholar 

  41. Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut EK, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000;356:615–20.

    Article  CAS  PubMed  Google Scholar 

  42. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17:103–11.

    Article  CAS  PubMed  Google Scholar 

  43. Ruilope LM, Dukat A, Bhm M, Lacourcire Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375:1255–66.

    Article  CAS  PubMed  Google Scholar 

  44. •• Jhund PS, Claggett B, Packer M, Zile MR, Voors AA, Pieske B, et al. Independence of the blood pressure lowering effect and efficacy of the angiotensin receptor neprilysin inhibitor, LCZ696, in patients with heart failure with preserved ejection fraction: an analysis of the PARAMOUNT trial. Eur J Heart Fail. 2014;16:671–7. In this analysis of the PARAMOUNT trial of sacubitril/valsartan vs valsartan, relative improvements in NT-proBNP, left atrial volume, and renal function were independent of blood pressure lowering, providing the rationale for a unique beneficial action of sacubitril/valsartan beyond blood pressure lowering alone. This hypothesis is being tested in a large scale outcomes trial among patients with HFpEF.

  45. •• Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DEJ, Colvin MM, et al. 2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: an update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2016;68:1476–88. This guideline update includes a description of the recommended role of sacubitril/valsartan in the treatment of HFrEF.

  46. •• McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med [Internet]. 2014;371:993–1004. doi:10.1056/NEJMoa1409077. In the PARADIGM trial, a large scale randomized controlled trial of sacubitril/valsartan vs. enalapril conducted predominantly in patients with HFrEF and NYHA Class II-III symptoms, subjects receiving sacubitril/valsartan experienced reduced death, cardiovascular death, and worsening of heart failure.

  47. Desai AS, Claggett BL, Packer M, Zile MR, Rouleau JL, Swedberg K, et al. Influence of sacubitril/valsartan (LCZ696) on 30-day readmission after heart failure hospitalization. J Am Coll Cardiol. 2016;68:241–8.

    Article  CAS  PubMed  Google Scholar 

  48. Solomon SD, Claggett B, Packer M, Desai A, Zile MR, Swedberg K, et al. Efficacy of sacubitril/valsartan relative to a prior decompensation: the PARADIGM-HF trial. JACC Heart Fail. 2016;4:816–22.

    Article  PubMed  Google Scholar 

  49. Gattis WA, O’Connor CM, Gallup DS, Hasselblad V, Gheorghiade M. Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the Initiation Management Predischarge: Process for Assessment of Carvedilol Therapy in Heart Failure (IMPACT-HF) trial. J Am Coll Cardiol. 2004;43:1534–41.

    Article  CAS  PubMed  Google Scholar 

  50. Butler J, Arbogast PG, Daugherty J, Jain MK, Ray WA, Griffin MR. Outpatient utilization of angiotensin-converting enzyme inhibitors among heart failure patients after hospital discharge. J Am Coll Cardiol. 2004;43:2036–43.

    Article  CAS  PubMed  Google Scholar 

  51. • Vader JM, LaRue SJ, Stevens SR, Mentz RJ, DeVore AD, Lala A, et al. Timing and causes of readmission after acute heart failure hospitalization-insights from the heart failure network trials. J Card Fail. 2016;22:875–83. In a pooled analysis of three trials of acute HF, ACEI/ARB use was associated with lower all cause readmission/death in a model adjusting for renal dysfunction and LV systolic function, suggesting a role for these agents in improving post-discharge outcomes.

  52. • Simpson J, Jhund PS, Silva Cardoso J, Martinez F, Mosterd A, Ramires F, et al. Comparing LCZ696 with enalapril according to baseline risk using the MAGGIC and EMPHASIS-HF risk scores: an analysis of mortality and morbidity in PARADIGM-HF. J Am Coll Cardiol. 2015;66:2059–71. This analysis stratifying PARADIGM study participants by HF risk scoring demonstrated a consistent benefit of sacubitril/valsartan over enalapril, suggesting that benefit was not greatly attenuated among the patients with the most severe HF.

  53. Solomon SD, Claggett B, Desai AS, Packer M, Zile M, Swedberg K, et al. Influence of ejection fraction on outcomes and efficacy of sacubitril/valsartan (LCZ696) in heart failure with reduced ejection fraction: the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial. Circ Heart Fail. 2016;9, e002744.

    Article  CAS  PubMed  Google Scholar 

  54. Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation. 1993;88:2277–83.

    Article  CAS  PubMed  Google Scholar 

  55. O’Gara PT, Kushner FG, Ascheim DD, Casey DE, Chung MK, de Lemos JA, et al. ACCF/AHA guideline for the management of ST-Elevation myocardial infarction. J Am Coll Cardiol [Internet]. 2013;61:e78 LP-e140. Available from: http://www.onlinejacc.org/content/61/4/e78.abstract.

  56. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes. Circulation [Internet]. 2014. Available from: http://circ.ahajournals.org/content/early/2014/09/22/CIR.0000000000000134.abstract.

  57. Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:1670–6.

    Article  CAS  PubMed  Google Scholar 

  58. Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med [Internet]. 1992;327:669–77. doi:10.1056/NEJM199209033271001.

    Article  CAS  Google Scholar 

  59. Pfeffer MA, McMurray JJV, Velazquez EJ, Rouleau J-L, Kober L, Maggioni AP, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.

    Article  CAS  PubMed  Google Scholar 

  60. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  CAS  PubMed  Google Scholar 

  61. de Lemos JA, Morrow DA. Brain natriuretic peptide measurement in acute coronary syndromes. Circulation [Internet]. 2002;106:2868 LP-2870. Available from: http://circ.ahajournals.org/content/106/23/2868.abstract.

  62. Möllmann H, Nef HM, Kostin S, Dragu A, Maack C, Weber M, et al. Ischemia triggers BNP expression in the human myocardium independent from mechanical stress. Int J Cardiol [Internet]. 2017;143:289–97. doi:10.1016/j.ijcard.2009.03.012.

    Article  Google Scholar 

  63. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res [Internet]. 2006;69:318–28. doi:10.1016/j.cardiores.2005.10.001.

    Article  CAS  Google Scholar 

  64. Kasama S, Toyama T, Hatori T, Sumino H, Kumakura H, Takayama Y, et al. Effects of intravenous atrial natriuretic peptide on cardiac sympathetic nerve activity and left ventricular remodeling in patients with first anterior acute myocardial infarction. J Am Coll Cardiol. 2007;49:667–74.

    Article  CAS  PubMed  Google Scholar 

  65. Chen HH, Martin FL, Gibbons RJ, Schirger JA, Wright RS, Schears RM, et al. Low-dose nesiritide in human anterior myocardial infarction suppresses aldosterone and preserves ventricular function and structure: a proof of concept study. Heart. 2009;95:1315–9.

    Article  CAS  PubMed  Google Scholar 

  66. •• von Lueder TG, Wang BH, Kompa AR, Huang L, Webb R, Jordaan P, et al. Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Hear Fail [Internet]. 2015;8:71–8. Available from: http://circheartfailure.ahajournals.org/content/8/1/71.abstract. In a rat model, sacubitril/valsartan reduced LV volumes, improved LV systolic and diastolic function, conferred more favorable ventricular mechanics, and resulted in less myocyte hypertrophy and myocardial fibrosis compared to placebo. The action of sacubitril/valsartan on suppressing hypertrophy was greater than valsartan alone.

  67. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288:2144–50.

    Article  PubMed  Google Scholar 

  68. • Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. In this large scale randomized trial of spironolactone vs. placebo in patients with HFpEF, hospitalization for HF was reduced with spironolactone use, while mortality was not significantly reduced.

  69. Grewal J, McKelvie RS, Persson H, Tait P, Carlsson J, Swedberg K, et al. Usefulness of N-terminal pro-brain natriuretic Peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol. 2008;102:733–7.

    Article  CAS  PubMed  Google Scholar 

  70. van Veldhuisen DJ, Linssen GCM, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JGP, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol [Internet]. 2013;61:1498 LP-1506. Available from: http://www.onlinejacc.org/content/61/14/1498.abstract.

  71. van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MPV, Bronzwaer JGF, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.

    Article  PubMed  Google Scholar 

  72. • Lee DI, Zhu G, Sasaki T, Cho G-S, Hamdani N, Holewinski R, et al. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature. 2015;519:472–6. In this study of gene and protein expression in myocardial tissue and isolated myocytes, phosphodiesterase 9 was shown to regulate cGMP signaling in a manner independent of the nitric oxide pathway, suggesting a biologic target for therapy of cardiomyocyte hypertrophy and dysfunction.

  73. •• Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90. This state of the art review conceptualizes HFpEF as a multi-organ system disease with underlying metabolic dysfunction and suggests phenotype-specific therapeutic strategies.

  74. Jhund PS, Claggett BL, Voors AA, Zile MR, Packer M, Pieske BM, et al. Elevation in high-sensitivity troponin T in heart failure and preserved ejection fraction and influence of treatment with the angiotensin receptor neprilysin inhibitor LCZ696. Circ Heart Fail. 2014;7:953–9.

    Article  CAS  PubMed  Google Scholar 

  75. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95.

    Article  CAS  PubMed  Google Scholar 

  76. Kario K, Sun N, Chiang F-T, Supasyndh O, Baek SH, Inubushi-Molessa A, et al. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension. 2014;63:698–705.

    Article  CAS  PubMed  Google Scholar 

  77. Williams B, Cockcroft JR, Kario K, Zappe DH, Brunel PC, Wang Q, et al. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension: the PARAMETER Study. Hypertension. 2017;69.

  78. Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med [Internet]. 2002;347:1256–61. doi:10.1056/NEJMra020676.

    Article  Google Scholar 

  79. • Damman K, Tang WHW, Felker GM, Lassus J, Zannad F, Krum H, et al. Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol. 2014;63:853–71. In this study of elderly subjects with systolic hypertension and elevated pulse pressure, sacubitril/valsartan more effective than olmesartan in lowering clinic and ambulatory central aortic and brachial pressures.

  80. • Clark H, Krum H, Hopper I. Worsening renal function during renin-angiotensin-aldosterone system inhibitor initiation and long-term outcomes in patients with left ventricular systolic dysfunction. Eur J Heart Fail. 2014;16:41–8. In this meta-analysis of RAAS inhibitor trials in HFrEF subjects, worsening renal function was associated with worsened outcomes, however the benefit of RAAS inhibitor use in these subjects was actually greater than the benefit in those patients without worsening renal function – suggesting that worsening renal function alone should not deter physicians from using RAAS inhibitors in patients with HFrEF.

  81. Ohishi K, Hishida A, Honda N. Direct vasodilatory action of atrial natriuretic factor on canine glomerular afferent arterioles. Am J Physiol. 1988;255:F415–20.

    CAS  PubMed  Google Scholar 

  82. Marin-Grez M, Fleming JT, Steinhausen M. Atrial natriuretic peptide causes pre-glomerular vasodilatation and post-glomerular vasoconstriction in rat kidney. Nature. 1986;324:473–6.

    Article  CAS  PubMed  Google Scholar 

  83. Pham I, Sediame S, Maistre G, Roudot-Thoraval F, Chabrier PE, Carayon A, et al. Renal and vascular effects of C-type and atrial natriuretic peptides in humans. Am J Physiol. 1997;273:R1457–64.

    CAS  PubMed  Google Scholar 

  84. Jensen KT, Carstens J, Pedersen EB. Effect of BNP on renal hemodynamics, tubular function and vasoactive hormones in humans. Am J Physiol. 1998;274:F63–72.

    CAS  PubMed  Google Scholar 

  85. Taal MW, Nenov VD, Wong W, Satyal SR, Sakharova O, Choi JH, et al. Vasopeptidase inhibition affords greater renoprotection than angiotensin-converting enzyme inhibition alone. J Am Soc Nephrol. 2001;12:2051–9.

    CAS  PubMed  Google Scholar 

  86. • Voors AA, Gori M, Liu LCY, Claggett B, Zile MR, Pieske B, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17:510–7. In this analysis of the PARAMOUNT study of HFpEF subjects, subjects receiving sacubitril/valsartan had greater preservation of GFR and creatinine compared to subjects receiving valsartan.

  87. Appel RG, Wang J, Simonson MS, Dunn MJ. A mechanism by which atrial natriuretic factor mediates its glomerular actions. Am J Physiol. 1986;251:F1036–42.

    CAS  PubMed  Google Scholar 

  88. Canaan-Kuhl S, Ostendorf T, Zander K, Koch KM, Floege J. C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int. 1998;53:1143–51.

    Article  CAS  PubMed  Google Scholar 

  89. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  90. Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet (London, England). 1999;354:359–64.

    Article  CAS  Google Scholar 

  91. Kent DM, Jafar TH, Hayward RA, Tighiouart H, Landa M, de Jong P, et al. Progression risk, urinary protein excretion, and treatment effects of angiotensin-converting enzyme inhibitors in nondiabetic kidney disease. J Am Soc Nephrol. 2007;18:1959–65.

    Article  CAS  PubMed  Google Scholar 

  92. KDIGO. Clinical practice guideline for the management of blood pressure in chronic kidney disease KDIGO clinical practice guideline for the management of blood pressure in chronic kidney disease. Kidney Int Suppl. 2012;2:405–14.

    Article  Google Scholar 

  93. Guan H, Liu Y, Daily A, Police S, Kim M-H, Oddo S, et al. Peripherally expressed neprilysin reduces brain amyloid burden: a novel approach for treating Alzheimer’s disease. J Neurosci Res. 2009;87:1462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett. 2003;350:113–6.

    Article  CAS  PubMed  Google Scholar 

  95. Park MH, Lee JK, Choi S, Ahn J, Jin HK, Park J-S, et al. Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer’s disease mice. Brain Res. 2013;1529:113–24.

    Article  CAS  PubMed  Google Scholar 

  96. • Langenickel TH, Tsubouchi C, Ayalasomayajula S, Pal P, Valentin M-A, Hinder M, et al. The effect of LCZ696 (sacubitril/valsartan) on amyloid-beta concentrations in cerebrospinal fluid in healthy subjects. Br J Clin Pharmacol. 2016;81:878–90. In this small study in healthy human volunteers, sacubitril/valsartan did increase CSF levels of soluble, but not aggregable isoforms of amyloid beta.

  97. • Cannon JA, Shen L, Jhund PS, Kristensen SL, Kober L, Chen F, et al. Dementia-related adverse events in PARADIGM-HF and other trials in heart failure with reduced ejection fraction. Eur J Heart Fail. 2017;19:129–37. In this multiple trial analysis, dementia-related adverse events were found to be related to subject age and were not higher among PARADIGM-HF subjects relative to the other HF trials.

  98. Javaheri S, Parker TJ, Liming JD, Corbett WS, Nishiyama H, Wexler L, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation. 1998;97:2154–9.

    Article  CAS  PubMed  Google Scholar 

  99. Solin P, Bergin P, Richardson M, Kaye DM, Walters EH, Naughton MT. Influence of pulmonary capillary wedge pressure on central apnea in heart failure. Circulation. 1999;99:1574–9.

    Article  CAS  PubMed  Google Scholar 

  100. Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99:1435–40.

    Article  CAS  PubMed  Google Scholar 

  101. • Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho M-P, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105. In this randomized trial conducted in patients with central sleep apnea and HFrEF, use of adaptive servo-ventilation was associated with increased mortality.

  102. Kraiczi H, Hedner J, Peker Y, Grote L. Comparison of atenolol, amlodipine, enalapril, hydrochlorothiazide, and losartan for antihypertensive treatment in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2000;161:1423–8.

    Article  CAS  PubMed  Google Scholar 

  103. Calvin AD, Somers VK, van der Walt C, Scott CG, Olson LJ. Relation of natriuretic peptide concentrations to central sleep apnea in patients with heart failure. Chest. 2011;140:1517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carmona-Bernal C, Quintana-Gallego E, Villa-Gil M, Sanchez-Armengol A, Martinez-Martinez A, Capote F. Brain natriuretic peptide in patients with congestive heart failure and central sleep apnea. Chest. 2005;127:1667–73.

    Article  CAS  PubMed  Google Scholar 

  105. Ogawa T, Kiryu-Seo S, Tanaka M, Konishi H, Iwata N, Saido T, et al. Altered expression of neprilysin family members in the pituitary gland of sleep-disturbed rats, an animal model of severe fatigue. J Neurochem. 2005;95:1156–66.

    Article  CAS  PubMed  Google Scholar 

  106. Isaac RE, Johnson EC, Audsley N, Shirras AD. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. J Exp Biol. 2007;210:4465–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Vader receives support from the NIH Grant U10 HL110309.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin M. Vader.

Ethics declarations

Conflict of Interest

Elizabeth Riddell and Justin M. Vader declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riddell, E., Vader, J.M. Potential Expanded Indications for Neprilysin Inhibitors. Curr Heart Fail Rep 14, 134–145 (2017). https://doi.org/10.1007/s11897-017-0327-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0327-y

Keywords

Navigation