Skip to main content
Log in

The Nitrate-Nitrite-NO Pathway and Its Implications for Heart Failure and Preserved Ejection Fraction

  • Pharmacologic Therapy (W H W Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction, and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic left ventricular (LV) load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown to exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term “disease-modifying” effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • of importance •• of major importance

  1. Lam CS, Donal E, Kraigher-Krainer E, Vasan RS. Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:18–28.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Vasan RS, Benjamin EJ, Levy D. Prevalence, clinical features and prognosis of diastolic heart failure: an epidemiologic perspective. J Am Coll Cardiol. 1995;26:1565–74.

    Article  CAS  PubMed  Google Scholar 

  3. Redfield MM, Jacobsen SJ, Burnett Jr JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA J Am Med Assoc. 2003;289:194–202.

    Article  Google Scholar 

  4. Kitzman DW, Gardin JM, Gottdiener JS, Arnold A, Boineau R, Aurigemma G, et al. Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group. Cardiovascular Health Study. Am J Cardiol. 2001;87:413–9.

    Article  CAS  PubMed  Google Scholar 

  5. Devereux RB, Roman MJ, Liu JE, Welty TK, Lee ET, Rodeheffer R, et al. Congestive heart failure despite normal left ventricular systolic function in a population-based sample: the Strong Heart Study. Am J Cardiol. 2000;86:1090–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ceia F, Fonseca C, Mota T, Morais H, Matias F, de Sousa A, et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail. 2002;4:531–9.

    Article  PubMed  Google Scholar 

  7. Mosterd A, Hoes AW, de Bruyne MC, Deckers JW, Linker DT, Hofman A, et al. Prevalence of heart failure and left ventricular dysfunction in the general population; The Rotterdam Study. Eur Heart J. 1999;20:447–55.

    Article  CAS  PubMed  Google Scholar 

  8. Morgan S, Smith H, Simpson I, Liddiard GS, Raphael H, Pickering RM, et al. Prevalence and clinical characteristics of left ventricular dysfunction among elderly patients in general practice setting: cross sectional survey. BMJ. 1999;318:368–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cortina A, Reguero J, Segovia E, Rodriguez Lambert JL, Cortina R, Arias JC, et al. Prevalence of heart failure in Asturias (a region in the north of Spain). Am J Cardiol. 2001;87:1417–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kupari M, Lindroos M, Iivanainen AM, Heikkila J, Tilvis R. Congestive heart failure in old age: prevalence, mechanisms and 4-year prognosis in the Helsinki Ageing Study. J Intern Med. 1997;241:387–94.

    Article  CAS  PubMed  Google Scholar 

  11. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  12. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  13. Lenzen MJ, op Reimer WJ S, Boersma E, Vantrimpont PJ, Follath F, Swedberg K, et al. Differences between patients with a preserved and a depressed left ventricular function: a report from the EuroHeart Failure Survey. Eur Heart J. 2004;25:1214–20.

    Article  CAS  PubMed  Google Scholar 

  14. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. American College of Cardiology F and American Heart Association Task Force on Practice G. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    Article  PubMed  Google Scholar 

  15. Oghlakian GO, Sipahi I, Fang JC. Treatment of heart failure with preserved ejection fraction: have we been pursuing the wrong paradigm? Mayo Clin Proc. 2011;86:531–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ferrari R, Bohm M, Cleland JG, Paulus WJ, Pieske B, Rapezzi C, et al. Heart failure with preserved ejection fraction: uncertainties and dilemmas. Eur J Heart Fail. 2015;17:665–71.

    Article  CAS  PubMed  Google Scholar 

  17. Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71.

    Article  PubMed  Google Scholar 

  18. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309:1268–77.

    Article  CAS  PubMed  Google Scholar 

  19. Hoekstra T, Lesman-Leegte I, van Veldhuisen DJ, Sanderman R, Jaarsma T. Quality of life is impaired similarly in heart failure patients with preserved and reduced ejection fraction. Eur J Heart Fail. 2011;13:1013–8.

    Article  PubMed  Google Scholar 

  20. Lewis EF, Lamas GA, O'Meara E, Granger CB, Dunlap ME, McKelvie RS, et al. Characterization of health-related quality of life in heart failure patients with preserved versus low ejection fraction in CHARM. Eur J Heart Fail. 2007;9:83–91.

    Article  PubMed  Google Scholar 

  21. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288:2144–50.

    Article  PubMed  Google Scholar 

  22. Phan TT, Shivu GN, Abozguia K, Sanderson JE, Frenneaux M. The pathophysiology of heart failure with preserved ejection fraction: from molecular mechanisms to exercise haemodynamics. Int J Cardiol. 2012;158:337–43.

    Article  PubMed  Google Scholar 

  23. Kitzman DW, Higginbotham MB, Cobb FR, Sheikh KH, Sullivan MJ. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank-Starling mechanism. J Am Coll Cardiol. 1991;17:1065–72.

    Article  CAS  PubMed  Google Scholar 

  24. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  CAS  PubMed  Google Scholar 

  25. Maeder MT, Thompson BR, Brunner-La Rocca HP, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56:855–63.

    Article  PubMed  Google Scholar 

  26. Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–47.

    Article  PubMed  Google Scholar 

  28. Ennezat PV, Lefetz Y, Marechaux S, Six-Carpentier M, Deklunder G, Montaigne D, et al. Left ventricular abnormal response during dynamic exercise in patients with heart failure and preserved left ventricular ejection fraction at rest. J Card Fail. 2008;14:475–80.

    Article  PubMed  Google Scholar 

  29. Houstis NE, Lewis GD. Causes of exercise intolerance in heart failure with preserved ejection fraction: searching for consensus. J Card Fail. 2014;20:762–78. Excellent review article discussing the mechanisms of exertional intolerance in HFpEF.

    Article  PubMed  Google Scholar 

  30. Weber T, Wassertheurer S, O'Rourke MF, Haiden A, Zweiker R, Rammer M, et al. Pulsatile hemodynamics in patients with exertional dyspnea: potentially of value in the diagnostic evaluation of suspected heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;61:1874–83.

    Article  PubMed  Google Scholar 

  31. Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kitzman DW, Nicklas B, Kraus WE, Lyles MF, Eggebeen J, Morgan TM, et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2014;306:H1364–70. This study demonstrates important structural abnormalities within the peripheral skeletal muscles of HFpEF patients including reduced Type I fibers and reduced capillary to fiber ratios, both of which correlated with impaired peak aerobic capacity.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Borlaug BA, Olson TP, Lam CS, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54. Important article demonstrating key hemodynamic limitations identified in HFpEF patients.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Poole DC, Hirai DM, Copp SW, Musch TI. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am J Physiol Heart Circ Physiol. 2012;302:H1050–63. Excellent review article describing impairments in oxygen transport found in heart failure and their implications for exercise intolerance.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Umbrello M, Dyson A, Feelisch M and Singer M. The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply–demand matching. Antioxid Redox Signal. 2013.

  36. Totzeck M, Hendgen-Cotta UB, Luedike P, Berenbrink M, Klare JP, Steinhoff HJ, et al. Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation. 2012;126:325–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Dufour SP, Patel RP, Brandon A, Teng X, Pearson J, Barker H, et al. Erythrocyte-dependent regulation of human skeletal muscle blood flow: role of varied oxyhemoglobin and exercise on nitrite, S-nitrosohemoglobin, and ATP. Am J Physiol Heart Circ Physiol. 2010;299:H1936–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol. 2009;107:1144–55.

    Article  CAS  PubMed  Google Scholar 

  39. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9:1498–505. Important article demonstrating increased conversion of nitrite to NO in the context of exercise.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke T, et al. Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation. 1996;94:3362–8. This study demonstrates the adverse effects of wave reflections arriving during late-systole and shows greater degrees of hypertrophy and fibrosis associated with late-systolic load.

    Article  CAS  PubMed  Google Scholar 

  41. Gillebert TC, Lew WY. Influence of systolic pressure profile on rate of left ventricular pressure fall. Am J Physiol. 1991;261:H805–13. this study demonstrates that, for any given increase in pressure, late systolic load leads to a much greater impairement in ventricular relaxation, compared to early systolic load.

    CAS  PubMed  Google Scholar 

  42. Nichols WW ORM, Vlachopoulos C. McDonald’s blood flow in arteries. Theoretical, Experimental and Clinical Principles. 6 ed: Hodder Arnold; 2011.

  43. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 1: pressure and flow measurements and basic principles of wave conduction and reflection. Hypertension. 2010;56:555–62.

    Article  CAS  PubMed  Google Scholar 

  44. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 2010;56:563–70.

    Article  CAS  PubMed  Google Scholar 

  45. Chirinos JA and Segers P. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 56:563–70.

  46. Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, De Bacquer D, St John Sutton M and Gillebert T. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults. The Asklepios study. Hypertension. 2013;In press.

  47. Chirinos JA, Segers P, Gillebert TC, Gupta AK, De Buyzere ML, De Bacquer D, et al. Arterial properties as determinants of time-varying myocardial stress in humans. Hypertension. 2012;60:64–70.

    Article  CAS  PubMed  Google Scholar 

  48. Shah SJ, Wasserstrom JA. Increased arterial wave reflection magnitude: a novel form of stage B heart failure? J Am Coll Cardiol. 2012;60:2178–81.

    Article  PubMed  Google Scholar 

  49. Zamani P, Bluemke DA, Jacobs Jr DR, Duprez DA, Kronmal R, Lilly SM, et al. Resistive and pulsatile arterial load as predictors of left ventricular mass and geometry: the multi-ethnic study of atherosclerosis. Hypertension. 2015;65:85–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O'Rourke MF. Different role of wave reflection magnitude and timing on left ventricular mass reduction during antihypertensive treatment. J Hypertens. 2008;26:1017–24.

    Article  CAS  PubMed  Google Scholar 

  51. Fukuta H, Ohte N, Wakami K, Asada K, Goto T, Mukai S, et al. Impact of arterial load on left ventricular diastolic function in patients undergoing cardiac catheterization for coronary artery disease. Circ J Off J Jpn Circ Soc. 2010;74:1900–5.

    Google Scholar 

  52. Weber T, O'Rourke MF, Ammer M, Kvas E, Punzengruber C, Eber B. Arterial stiffness and arterial wave reflections are associated with systolic and diastolic function in patients with normal ejection fraction. Am J Hypertens. 2008;21:1194–202.

    Article  PubMed  Google Scholar 

  53. Chirinos JA, Segers P, Rietzschel ER, De Buyzere ML, Raja MW, Claessens T, et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension. 2013;61:296–303. This study demonstrates the relationship between late systolic load (wall stress) and abnormal myocardial relaxation.

    Article  CAS  PubMed  Google Scholar 

  54. Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7. This study demonstrates the strong association between wave reflections, which cause late systolic load, and incident heart failure over ~8 years in the MESA cohort.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Omar SA, Fok H, Tilgner KD, Nair A, Hunt J, Jiang B, et al. Paradoxical normoxia-dependent selective actions of inorganic nitrite in human muscular conduit arteries and related selective actions on central blood pressures. Circulation. 2015;131:381–9. discussion 389. this article demonstrates the reduction in augmentation index, a metric of wave reflections, in conduit arteries with nitrite infusion.

    Article  CAS  PubMed  Google Scholar 

  56. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. The Effect of Inorganic Nitrate on Exercise Capacity in Heart Failure with Preserved Ejection Fraction. Circulation. 2015;131:371–80. This study provides the first evidence that targetting the inorganic nitrate-nitrite-NO pathway in HFpEF leads to improvements in aerobic capacity, mediated by improved vasodilatory and cardiac output reserves.

    Article  CAS  PubMed  Google Scholar 

  57. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–67.

    Article  CAS  PubMed  Google Scholar 

  58. Machha A, Schechter AN. Inorganic nitrate: a major player in the cardiovascular health benefits of vegetables? Nutr Rev. 2012;70:367–72.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Tang Y, Jiang H, Bryan NS. Nitrite and nitrate: cardiovascular risk-benefit and metabolic effect. Curr Opin Lipidol. 2011;22:11–5.

    Article  CAS  PubMed  Google Scholar 

  60. Weitzberg E, Hezel M, Lundberg JO. Nitrate-nitrite-nitric oxide pathway: implications for anesthesiology and intensive care. Anesthesiology. 2010;113:1460–75.

    Article  CAS  PubMed  Google Scholar 

  61. Lundberg JO, Carlstrom M, Larsen FJ, Weitzberg E. Roles of dietary inorganic nitrate in cardiovascular health and disease. Cardiovasc Res. 2011;89:525–32.

    Article  CAS  PubMed  Google Scholar 

  62. Dibble CT, Lima JA, Bluemke DA, Chirinos JA, Chahal H, Bristow MR, et al. Regional left ventricular systolic function and the right ventricle: the multi-ethnic study of atherosclerosis right ventricle study. Chest. 2011;140:310–6.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Rubin MF, Rosas SE, Chirinos JA, Townsend RR. Surrogate markers of cardiovascular disease in CKD: what's under the hood? Am J Kidney Dis. 2011;57:488–97.

    Article  PubMed  Google Scholar 

  64. Durand M, Koistinen R, Chirinos M, Rodriguez JL, Zambrano E, Seppala M, et al. Hormonal evaluation and midcycle detection of intrauterine glycodelin in women treated with levonorgestrel as in emergency contraception. Contraception. 2010;82:526–33.

    Article  CAS  PubMed  Google Scholar 

  65. Siervo M, Lara J, Ogbonmwan I, Mathers JC. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J Nutr. 2013;143:818–26.

    Article  CAS  PubMed  Google Scholar 

  66. Hunault CC, van Velzen AG, Sips AJ, Schothorst RC, Meulenbelt J. Bioavailability of sodium nitrite from an aqueous solution in healthy adults. Toxicol Lett. 2009;190:48–53.

    Article  CAS  PubMed  Google Scholar 

  67. Dejam A, Hunter CJ, Tremonti C, Pluta RM, Hon YY, Grimes G, et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation. 2007;116:1821–31.

    Article  CAS  PubMed  Google Scholar 

  68. Pluta RM, Oldfield EH, Bakhtian KD, Fathi AR, Smith RK, Devroom HL, et al. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers. PLoS One. 2011;6:e14504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Omar SA, Webb AJ. Nitrite reduction and cardiovascular protection. J Mol Cell Cardiol. 2014;73:57–69.

    Article  CAS  PubMed  Google Scholar 

  70. Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2012;26:229–40.

    Article  CAS  Google Scholar 

  71. Shiva S, Huang Z, Grubina R, Sun J, Ringwood LA, MacArthur PH, et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res. 2007;100:654–61.

    Article  CAS  PubMed  Google Scholar 

  72. Rassaf T, Flogel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res. 2007;100:1749–54.

    Article  CAS  PubMed  Google Scholar 

  73. Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A. 2008;105:10256–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Gladwin MT, Kim-Shapiro DB. The functional nitrite reductase activity of the heme-globins. Blood. 2008;112:2636–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci U S A. 2004;101:13683–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Kozlov AV, Staniek K, Nohl H. Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett. 1999;454:127–30.

    Article  CAS  PubMed  Google Scholar 

  77. Zweier JL, Li H, Samouilov A, Liu X. Mechanisms of nitrite reduction to nitric oxide in the heart and vessel wall. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2010;22:83–90.

    Article  CAS  Google Scholar 

  78. Aamand R, Dalsgaard T, Jensen FB, Simonsen U, Roepstorff A, Fago A. Generation of nitric oxide from nitrite by carbonic anhydrase: a possible link between metabolic activity and vasodilation. Am J Physiol Heart Circ Physiol. 2009;297:H2068–74.

    Article  CAS  PubMed  Google Scholar 

  79. Carlsson S, Wiklund NP, Engstrand L, Weitzberg E, Lundberg JO. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2001;5:580–6.

    Article  CAS  Google Scholar 

  80. Gago B, Lundberg JO, Barbosa RM, Laranjinha J. Red wine-dependent reduction of nitrite to nitric oxide in the stomach. Free Radic Biol Med. 2007;43:1233–42.

    Article  CAS  PubMed  Google Scholar 

  81. Gago B, Nystrom T, Cavaleiro C, Rocha BS, Barbosa RM, Laranjinha J, et al. The potent vasodilator ethyl nitrite is formed upon reaction of nitrite and ethanol under gastric conditions. Free Radic Biol Med. 2008;45:404–12.

    Article  CAS  PubMed  Google Scholar 

  82. Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A. Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun. 2006;341:816–21.

    Article  CAS  PubMed  Google Scholar 

  83. Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE. Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci. 2007;64:96–103.

    Article  CAS  PubMed  Google Scholar 

  84. Maher AR, Milsom AB, Gunaruwan P, Abozguia K, Ahmed I, Weaver RA, et al. Hypoxic modulation of exogenous nitrite-induced vasodilation in humans. Circulation. 2008;117:670–7. Important article demonstrating the increased conversion of nitrite to NO in the context of hypoxia.

    Article  CAS  PubMed  Google Scholar 

  85. Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: a possible mediator of 'acidic-metabolic' vasodilation. Acta Physiol Scand. 2001;171:9–16. Important article demonstrating the increased conversion of nitrite to NO in the context of acidemia.

    CAS  PubMed  Google Scholar 

  86. Liu C, Wajih N, Liu X, Basu S, Janes J, Marvel M, et al. Mechanisms of human erythrocytic bioactivation of nitrite. J Biol Chem. 2015;290:1281–94. Important article demonstrating the importance of deoxyhemoglobin in catalyzing the reduction of nitrite to nitric oxide.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Huang Z, Shiva S, Kim-Shapiro DB, Patel RP, Ringwood LA, Irby CE, et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest. 2005;115:2099–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Gladwin MT, Raat NJ, Shiva S, Dezfulian C, Hogg N, Kim-Shapiro DB, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006;291:H2026–35.

    Article  CAS  PubMed  Google Scholar 

  89. Ghosh SM, Kapil V, Fuentes-Calvo I, Bubb KJ, Pearl V, Milsom AB, et al. Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension. 2013;61:1091–102.

    Article  CAS  PubMed  Google Scholar 

  90. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Furchgott RF, Bhadrakom S. Reactions of strips of rabbit aorta to epinephrine, isopropylarterenol, sodium nitrite and other drugs. J Pharmacol Exp Ther. 1953;108:129–43.

    CAS  PubMed  Google Scholar 

  92. Lauer T, Preik M, Rassaf T, Strauer BE, Deussen A, Feelisch M, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci U S A. 2001;98:12814–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Abrams J. Beneficial actions of nitrates in cardiovascular disease. Am J Cardiol. 1996;77:31C–7.

    Article  CAS  PubMed  Google Scholar 

  94. Ingram TE, Fraser AG, Bleasdale RA, Ellins EA, Margulescu AD, Halcox JP, et al. Low-dose sodium nitrite attenuates myocardial ischemia and vascular ischemia-reperfusion injury in human models. J Am Coll Cardiol. 2013;61:2534–41.

    Article  CAS  PubMed  Google Scholar 

  95. Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG, et al. Beetroot juice and exercise: pharmacodynamic and dose–response relationships. J Appl Physiol. 2013;115:325–36.

    Article  CAS  PubMed  Google Scholar 

  96. Govoni M, Jansson EA, Weitzberg E, Lundberg JO. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2008;19:333–7.

    Article  CAS  Google Scholar 

  97. Lundberg JO, Govoni M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med. 2004;37:395–400.

    Article  CAS  PubMed  Google Scholar 

  98. Petersson J, Carlstrom M, Schreiber O, Phillipson M, Christoffersson G, Jagare A, et al. Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med. 2009;46:1068–75.

    Article  CAS  PubMed  Google Scholar 

  99. Kapil V, Haydar SM, Pearl V, Lundberg JO, Weitzberg E, Ahluwalia A. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic Biol Med. 2013;55:93–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51:784–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Kosoglou T, Patrick JE, Cohen A, Radwanski E, Christopher D, Affrime MB. Pharmacokinetics of isosorbide-5-mononitrate after oral administration of an extended-release mononitrate formulation versus a standard dinitrate formulation. Clin Ther. 1995;17:241–51.

    Article  CAS  PubMed  Google Scholar 

  102. Abshagen UW. Pharmacokinetics of isosorbide mononitrate. Am J Cardiol. 1992;70:61G–6.

    Article  CAS  PubMed  Google Scholar 

  103. Chen Z, Zhang J, Stamler JS. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci U S A. 2002;99:8306–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Elkayam U, Kulick D, McIntosh N, Roth A, Hsueh W, Rahimtoola SH. Incidence of early tolerance to hemodynamic effects of continuous infusion of nitroglycerin in patients with coronary artery disease and heart failure. Circulation. 1987;76:577–84.

    Article  CAS  PubMed  Google Scholar 

  105. Waller DG. Optimal nitrate therapy with a once-daily sustained-release formulation of isosorbide mononitrate. J Cardiovasc Pharmacol. 1999;34 Suppl 2:S21–7. discussion S29-31.

    CAS  PubMed  Google Scholar 

  106. Munzel T, Daiber A, Mulsch A. Explaining the phenomenon of nitrate tolerance. Circ Res. 2005;97:618–28.

    Article  PubMed  CAS  Google Scholar 

  107. Carlstrom M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, et al. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89:574–85.

    Article  PubMed  CAS  Google Scholar 

  108. Kapil V, Khambata RS, Robertson A, Caulfield MJ, Ahluwalia A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: a randomized, phase 2, double-blind, placebo-controlled study. Hypertension. 2015;65:320–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, et al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135–48.

    Article  CAS  PubMed  Google Scholar 

  110. Bescos R, Rodriguez FA, Iglesias X, Ferrer MD, Iborra E, Pons A. Acute administration of inorganic nitrate reduces VO(2peak) in endurance athletes. Med Sci Sports Exerc. 2011;43:1979–86.

    Article  CAS  PubMed  Google Scholar 

  111. Bond Jr V, Curry BH, Adams RG, Millis RM, Haddad GE. Cardiorespiratory function associated with dietary nitrate supplementation. Appl Physiol Nutr Metab. 2014;39:168–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Lansley KE, Winyard PG, Fulford J, Vanhatalo A, Bailey SJ, Blackwell JR, et al. Dietary nitrate supplementation reduces the O2 cost of walking and running: a placebo-controlled study. J Appl Physiol. 2011;110:591–600.

    Article  CAS  PubMed  Google Scholar 

  113. Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, et al. Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metab. 2011;13:149–59.

    Article  CAS  PubMed  Google Scholar 

  114. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med. 2010;48:342–7.

    Article  CAS  PubMed  Google Scholar 

  115. Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007;191:59–66.

    Article  CAS  Google Scholar 

  116. Coggan AR, Leibowitz JL, Anderson Spearie C, Kadkhodayan A, Thomas DP, Ramamurthy S, Mahmood K, Park S, Waller S, Farmer M and Peterson LR. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: a double-blind, placebo-controlled, randomized trial. Circ Heart Fail. 2015;8(5):914–20.

  117. Vanhatalo A, Bailey SJ, Blackwell JR, DiMenna FJ, Pavey TG, Wilkerson DP, et al. Acute and chronic effects of dietary nitrate supplementation on blood pressure and the physiological responses to moderate-intensity and incremental exercise. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1121–31.

    Article  CAS  PubMed  Google Scholar 

  118. Lee JS, Stebbins CL, Jung E, Nho H, Kim JK, Chang MJ, et al. Effects of chronic dietary nitrate supplementation on the hemodynamic response to dynamic exercise. Am J Physiol Regul Integr Comp Physiol. 2015;309:R459–66.

    Article  PubMed  Google Scholar 

  119. Montenegro MF, Amaral JH, Pinheiro LC, Sakamoto EK, Ferreira GC, Reis RI, et al. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Radic Biol Med. 2011;51:144–52.

    Article  CAS  PubMed  Google Scholar 

  120. Haas M, Classen HG, Thoni H, Classen UG, Drescher B. Persistent antihypertensive effect of oral nitrite supplied up to one year via the drinking water in spontaneously hypertensive rats. Arzneimittelforschung. 1999;49:318–23.

    CAS  PubMed  Google Scholar 

  121. Thomas GR, DiFabio JM, Gori T, Parker JD. Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol. 2007;49:1289–95.

    Article  CAS  PubMed  Google Scholar 

  122. Gori T, Mak SS, Kelly S, Parker JD. Evidence supporting abnormalities in nitric oxide synthase function induced by nitroglycerin in humans. J Am Coll Cardiol. 2001;38:1096–101.

    Article  CAS  PubMed  Google Scholar 

  123. Heitzer T, Just H, Brockhoff C, Meinertz T, Olschewski M, Munzel T. Long-term nitroglycerin treatment is associated with supersensitivity to vasoconstrictors in men with stable coronary artery disease: prevention by concomitant treatment with captopril. J Am Coll Cardiol. 1998;31:83–8.

    Article  CAS  PubMed  Google Scholar 

  124. Caramori PR, Adelman AG, Azevedo ER, Newton GE, Parker AB, Parker JD. Therapy with nitroglycerin increases coronary vasoconstriction in response to acetylcholine. J Am Coll Cardiol. 1998;32:1969–74.

    Article  CAS  PubMed  Google Scholar 

  125. Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A. Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2012;26:197–202.

    Article  CAS  Google Scholar 

  126. Gilchrist M, Winyard PG, Aizawa K, Anning C, Shore A, Benjamin N. Effect of dietary nitrate on blood pressure, endothelial function, and insulin sensitivity in type 2 diabetes. Free Radic Biol Med. 2013;60:89–97.

    Article  CAS  PubMed  Google Scholar 

  127. Rammos C, Hendgen-Cotta UB, Sobierajski J, Bernard A, Kelm M, Rassaf T. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. J Am Coll Cardiol. 2014;63:1584–5.

    Article  CAS  PubMed  Google Scholar 

  128. Kapil V, Milsom AB, Okorie M, Maleki-Toyserkani S, Akram F, Rehman F, et al. Inorganic nitrate supplementation lowers blood pressure in humans: role for nitrite-derived NO. Hypertension. 2010;56:274–81.

    Article  CAS  PubMed  Google Scholar 

  129. Taylor AL. African-American Heart Failure Trial I. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004;351:2049–57.

    Article  CAS  PubMed  Google Scholar 

  130. Siervo M, Lara J, Jajja A, Sutyarjoko A, Ashor AW, Brandt K, et al. Ageing modifies the effects of beetroot juice supplementation on 24-hour blood pressure variability: an individual participant meta-analysis. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2015;47:97–105.

    Article  CAS  Google Scholar 

  131. Miller GD, Marsh AP, Dove RW, Beavers D, Presley T, Helms C, et al. Plasma nitrate and nitrite are increased by a high-nitrate supplement but not by high-nitrate foods in older adults. Nutr Res. 2012;32:160–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Mohler 3rd ER, Hiatt WR, Gornik HL, Kevil CG, Quyyumi A, Haynes WG, et al. Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: safety, walking distance and endothelial function. Vasc Med. 2014;19:9–17.

    Article  CAS  PubMed  Google Scholar 

  133. Greenway FL, Predmore BL, Flanagan DR, Giordano T, Qiu Y, Brandon A, et al. Single-dose pharmacokinetics of different oral sodium nitrite formulations in diabetes patients. Diabetes Technol Ther. 2012;14:552–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Pinheiro LC, Montenegro MF, Amaral JH, Ferreira GC, Oliveira AM, Tanus-Santos JE. Increase in gastric pH reduces hypotensive effect of oral sodium nitrite in rats. Free Radic Biol Med. 2012;53:701–9.

    Article  CAS  PubMed  Google Scholar 

  135. Maher AR, Arif S, Madhani M, Abozguia K, Ahmed I, Fernandez BO, et al. Impact of chronic congestive heart failure on pharmacokinetics and vasomotor effects of infused nitrite. Br J Pharmacol. 2013;169:659–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med. 1999;34:646–56.

    Article  CAS  PubMed  Google Scholar 

  137. Forman D, Al-Dabbagh S, Doll R. Nitrates, nitrites and gastric cancer in Great Britain. Nature. 1985;313:620–5.

    Article  CAS  PubMed  Google Scholar 

  138. Sindelar JJ, Milkowski AL. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide Biol Chem Off J Nitric Oxide Soc. 2012;26:259–66.

    Article  CAS  Google Scholar 

  139. Weitzberg E, Lundberg JO. Novel aspects of dietary nitrate and human health. Annu Rev Nutr. 2013;33:129–59.

    Article  CAS  PubMed  Google Scholar 

  140. Eichholzer M, Gutzwiller F. Dietary nitrates, nitrites, and N-nitroso compounds and cancer risk: a review of the epidemiologic evidence. Nutr Rev. 1998;56:95–105.

    Article  CAS  PubMed  Google Scholar 

  141. Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2:593–602.

    Article  CAS  PubMed  Google Scholar 

  142. Al-Dabbagh S, Forman D, Bryson D, Stratton I, Doll R. Mortality of nitrate fertiliser workers. Br J Ind Med. 1986;43:507–15.

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Fandrem SI, Kjuus H, Andersen A, Amlie E. Incidence of cancer among workers in a Norwegian nitrate fertiliser plant. Br J Ind Med. 1993;50:647–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Powlson DS, Addiscott TM, Benjamin N, Cassman KG, de Kok TM, van Grinsven H, et al. When does nitrate become a risk for humans? J Environ Qual. 2008;37:291–5.

    Article  CAS  PubMed  Google Scholar 

  145. van Loon AJ, Botterweck AA, Goldbohm RA, Brants HA, van Klaveren JD, van den Brandt PA. Intake of nitrate and nitrite and the risk of gastric cancer: a prospective cohort study. Br J Cancer. 1998;78:129–35.

    Article  PubMed Central  PubMed  Google Scholar 

  146. McKnight GM, Duncan CW, Leifert C, Golden MH. Dietary nitrate in man: friend or foe? Br J Nutr. 1999;81:349–58.

    Article  CAS  PubMed  Google Scholar 

  147. Mensinga TT, Speijers GJ, Meulenbelt J. Health implications of exposure to environmental nitrogenous compounds. Toxicol Rev. 2003;22:41–51.

    Article  CAS  PubMed  Google Scholar 

  148. Speijers G BP. Nitrate. Food Additives Series Geneva: Joint FAO/WHO Expert Committee on Food Additives. 2003.

  149. Wiseman M. The second World Cancer Research Fund/American Institute for Cancer Research expert report. Food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc. 2008;67:253–6.

    Article  PubMed  Google Scholar 

  150. Larsen FJ, Ekblom B, Sahlin K, Lundberg JO, Weitzberg E. Effects of dietary nitrate on blood pressure in healthy volunteers. N Engl J Med. 2006;355:2792–3.

    Article  CAS  PubMed  Google Scholar 

  151. Gao X, Yang T, Liu M, Peleli M, Zollbrecht C, Weitzberg E, Lundberg JO, Persson AE and Carlstrom M. NADPH oxidase in the renal microvasculature is a primary target for blood pressure-lowering effects by inorganic nitrate and nitrite. Hypertension. 2014.

  152. Clerc P, Rigoulet M, Leverve X, Fontaine E. Nitric oxide increases oxidative phosphorylation efficiency. J Bioenerg Biomembr. 2007;39:158–66.

    Article  CAS  PubMed  Google Scholar 

  153. Tsuchiya K, Kanematsu Y, Yoshizumi M, Ohnishi H, Kirima K, Izawa Y, et al. Nitrite is an alternative source of NO in vivo. Am J Physiol Heart Circ Physiol. 2005;288:H2163–70.

    Article  CAS  PubMed  Google Scholar 

  154. Zakeri R, Levine JA, Koepp GA, Borlaug BA, Chirinos JA, LeWinter M, et al. Nitrate's effect on activity tolerance in heart failure with preserved ejection fraction trial: rationale and design. Circ Heart Fail. 2015;8:221–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Chirinos.

Ethics declarations

Conflict of Interest

Julio A. Chirinos has received personal fees from Brystol Myers Squibb, OPKO Healthcare, Fukuda Denshi, Microsoft and Merck, grants from National Institutes of Health, American College of Radiology Network, Fukuda Denshi, Microsoft, Brystol Myers Squibb, and non-financial support from Atcor Medical outside the submitted work. In addition, Dr. Chirinos is named as inventor in a pending University of Pennsylvania patent application for the use of inorganic nitrates/nitrites for the treatment of HFpEF.

Payman Zamani declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirinos, J.A., Zamani, P. The Nitrate-Nitrite-NO Pathway and Its Implications for Heart Failure and Preserved Ejection Fraction. Curr Heart Fail Rep 13, 47–59 (2016). https://doi.org/10.1007/s11897-016-0277-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0277-9

Keywords

Navigation