Skip to main content

Advertisement

Log in

The Acute Cardiorenal Syndrome: Burden and Mechanisms of Disease

  • Epidemiology of Heart Failure (CSP Lam, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Worsening renal function during the treatment of acute decompensated heart failure, so-called acute cardio-renal syndrome, is very common and complicates the treatment course. The underlying pathophysiology of worsening renal function (WRF) involves variable contributions of renal hemodynamics, neurohormonal activity, and oxidative stress. Historically, WRF has been associated with adverse outcomes. However, emerging data support therapeutic strategies that permit WRF while effectively treating congestion as they are associated with improved outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121(23):2592–600.

    Article  PubMed  Google Scholar 

  2. Shchekochikhin D, Schrier RW, Lindenfeld J. Cardiorenal syndrome: pathophysiology and treatment. Curr Cardiol Rep. 2013;15(7):380.

    Article  PubMed  Google Scholar 

  3. Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13(8):599–608.

    Article  PubMed  Google Scholar 

  4. Gottlieb SS, Abraham W, Butler J, Forman DE, Loh E, Massie BM, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8(3):136–41.

    Article  PubMed  Google Scholar 

  5. Mentz RJ, O’Connor CM. Cardiorenal syndrome clinical trial end points. Heart Fail Clin. 2011;7(4):519–28. An original and critical view on clinical trial end points in the domain of cardiorenal interactions.

    Article  PubMed  Google Scholar 

  6. Ronco C, Di Lullo L. Cardiorenal syndrome. Heart Fail Clin. 2014;10(2):251–80.

    Article  PubMed  Google Scholar 

  7. Boron WFBE. Medical physiology: a cellular and molecular approach. Philadelphia: Saunders Elsevier; 2009.

    Google Scholar 

  8. Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P, et al. Tubular damage and worsening renal function in chronic heart failure. JACC Heart Fail. 2013;1(5):417–24.

    Article  PubMed  Google Scholar 

  9. Dupont M, Shrestha K, Singh D, Awad A, Kovach C, Scarcipino M, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14(6):597–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Testani JM, Coca SG, Shannon RP, Kimmel SE, Cappola TP. Influence of renal dysfunction phenotype on mortality in the setting of cardiac dysfunction: analysis of three randomized controlled trials. Eur J Heart Fail. 2011;13(11):1224–30. This article emphasizes that a negative outcome in HF appears to be contingent not simply on the presence of a reduced GFR, but probably on the underlying cause of WRF.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Wald R, Jaber BL, Price LL, Upadhyay A, Madias NE. Impact of hospital-associated hyponatremia on selected outcomes. Arch Intern Med. 2010;170(3):294–302.

    Article  CAS  PubMed  Google Scholar 

  12. Lin HJ, Chao CL, Chien KL, Ho YL, Lee CM, Lin YH, et al. Elevated blood urea nitrogen-to-creatinine ratio increased the risk of hospitalization and all-cause death in patients with chronic heart failure. Clin Res Cardiol Off J Ger Card Soc. 2009;98(8):487–92.

    Article  CAS  Google Scholar 

  13. Ezekowitz J, McAlister FA, Humphries KH, Norris CM, Tonelli M, Ghali WA, et al. The association among renal insufficiency, pharmacotherapy, and outcomes in 6,427 patients with heart failure and coronary artery disease. J Am Coll Cardiol. 2004;44(8):1587–92.

    Article  PubMed  Google Scholar 

  14. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30.

    Article  PubMed  Google Scholar 

  15. Hebert K, Dias A, Delgado MC, Franco E, Tamariz L, Steen D, et al. Epidemiology and survival of the five stages of chronic kidney disease in a systolic heart failure population. Eur J Heart Fail. 2010;12(8):861–5.

    Article  PubMed  Google Scholar 

  16. Cruz DN, Bagshaw SM. Heart-kidney interaction: epidemiology of cardiorenal syndromes. Int J Nephrol. 2010;2011:351291.

    PubMed Central  PubMed  Google Scholar 

  17. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  18. Forman DE, Butler J, Wang Y, Abraham WT, O’Connor CM, Gottlieb SS, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43(1):61–7.

    Article  PubMed  Google Scholar 

  19. Nohria A, Hasselblad V, Stebbins A, Pauly DF, Fonarow GC, Shah M, et al. Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol. 2008;51(13):1268–74.

    Article  PubMed  Google Scholar 

  20. Weinfeld MS, Chertow GM, Stevenson LW. Aggravated renal dysfunction during intensive therapy for advanced chronic heart failure. Am Heart J. 1999;138(2 Pt 1):285–90.

    Article  CAS  PubMed  Google Scholar 

  21. Krumholz HM, Chen YT, Vaccarino V, Wang Y, Radford MJ, Bradford WD, et al. Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol. 2000;85(9):1110–3.

    Article  CAS  PubMed  Google Scholar 

  22. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62. This article states WRF is not an independent determent of outcome in patients with ADHF but the association with congestion determines the negative of neutral prognostic value.

    Article  PubMed  Google Scholar 

  23. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Testani JM, McCauley BD, Chen J, Coca SG, Cappola TP, Kimmel SE. Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure. J Card Fail. 2011;17(12):993–1000.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Dupont M, Mullens W, Finucan M, Taylor DO, Starling RC, Tang WH. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15(4):433–40. The importance of simple hemodynamic parameters, blood pressure changes during treatment, in the pathophysiology of WRF was elegantly investigated in this observational study.

    Article  CAS  PubMed  Google Scholar 

  26. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39 Suppl 4:10–21. discussion 2–4.

    Article  PubMed  Google Scholar 

  27. Rusinaru D, Buiciuc O, Houpe D, Tribouilloy C. Renal function and long-term survival after hospital discharge in heart failure with preserved ejection fraction. Int J Cardiol. 2011;147(2):278–82.

    Article  PubMed  Google Scholar 

  28. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Mullens W, Abrahams Z, Skouri HN, Francis GS, Taylor DO, Starling RC, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51(3):300–6.

    Article  PubMed  Google Scholar 

  30. Triposkiadis FK, Butler J, Karayannis G, Starling RC, Filippatos G, Wolski K, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion: the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol. 2014;172(1):115–21.

    Article  PubMed  Google Scholar 

  31. Giamouzis G, Butler J, Starling RC, Karayannis G, Nastas J, Parisis C, et al. Impact of dopamine infusion on renal function in hospitalized heart failure patients: results of the Dopamine in Acute Decompensated Heart Failure (DAD-HF) Trial. J Card Fail. 2010;16(12):922–30.

    Article  CAS  PubMed  Google Scholar 

  32. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47(1):76–84.

    Article  PubMed  Google Scholar 

  33. Zile MR, Bennett TD, St John Sutton M, Cho YK, Adamson PB, Aaron MF, et al. Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation. 2008;118(14):1433–41.

    Article  PubMed  Google Scholar 

  34. Adams Jr KF, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149(2):209–16.

    Article  PubMed  Google Scholar 

  35. Fiksen-Olsen MJ, Romero JC. Renal effects of prostaglandin inhibition during increases in renal venous pressure. Am J Physiol. 1991;260(4 Pt 2):F525–9.

    CAS  PubMed  Google Scholar 

  36. Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC. Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension. 1992;19(2 Suppl):II137–41.

    CAS  PubMed  Google Scholar 

  37. Maxwell MH, Breed ES, Schwartz IL. Renal venous pressure in chronic congestive heart failure. J Clin Invest. 1950;29:342–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  39. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72(1):49–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Burnett Jr JC, Knox FG. Renal interstitial pressure and sodium excretion during renal vein constriction. Am J Physiol. 1980;238(4):F279–82.

    CAS  PubMed  Google Scholar 

  41. Wathen RL, Selkurt EE. Intrarenal regulatory factors of salt excretion during renal venous pressure elevation. Am J Physiol. 1969;216(6):1517–24.

    CAS  PubMed  Google Scholar 

  42. Kastner PR, Hall JE, Guyton AC. Renal hemodynamic responses to increased renal venous pressure: role of angiotensin II. Am J Physiol. 1982;243(3):F260–4.

    CAS  PubMed  Google Scholar 

  43. Tang WH, Mullens W. Cardiorenal syndrome in decompensated heart failure. Heart. 2010;96(4):255–60.

    Article  PubMed  Google Scholar 

  44. Verbrugge FH, Grieten L, Mullens W. New insights into combinational drug therapy to manage congestion in heart failure. Curr Heart Fail Rep. 2014;11(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  45. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, et al. Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol. 2007;49(6):675–83.

    Article  CAS  PubMed  Google Scholar 

  47. Voors AA, Davison BA, Felker GM, Ponikowski P, Unemori E, Cotter G, et al. Early drop in systolic blood pressure and worsening renal function in acute heart failure: renal results of Pre-RELAX-AHF. Eur J Heart Fail. 2011;13(9):961–7.

    Article  PubMed  Google Scholar 

  48. Bradley SE, Bradley GP. The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest. 1947;26:1010–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Doty JM, Saggi BH, Sugerman HJ. Effect of intravenous renal venous pressure on renal function. J Trauma. 1999;47:1000–3.

    Article  CAS  PubMed  Google Scholar 

  50. Malbrain MD, Deeren D, De Potter TJ. Intra-abdominal hypertension in the critically ill: it is time to pay attention. Curr Opin Crit Care. 2005;11:156–71.

    Article  PubMed  Google Scholar 

  51. Mullens W, Abrahams Z, Francis GS, Taylor DO, Starling RC, Tang WH. Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail. 2008;14(6):508–14.

    Article  PubMed  Google Scholar 

  52. Szymanski MK, Damman K, van Veldhuisen DJ, van Gilst WH, Hillege HL, de Boer RA. Prognostic value of renin and prorenin in heart failure patients with decreased kidney function. Am Heart J. 2011;162(3):487–93.

    Article  CAS  PubMed  Google Scholar 

  53. Poletti R, Vergaro G, Zyw L, Prontera C, Passino C, Emdin M. Prognostic value of plasma renin activity in heart failure patients with chronic kidney disease. Int J Cardiol. 2013;167(3):711–5.

    Article  PubMed  Google Scholar 

  54. Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S, et al. Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J. 2014;35(7):448–54.

    Article  CAS  PubMed  Google Scholar 

  55. Ruiz-Ortega M, Ruperez M, Lorenzo O, Esteban V, Blanco J, Mezzano S, et al. Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int Suppl. 2002;82:S12–22.

    Article  CAS  PubMed  Google Scholar 

  56. Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;99:S57–65.

    Article  CAS  PubMed  Google Scholar 

  57. Clark H, Krum H, Hopper I. Worsening renal function during renin-angiotensin-aldosterone system inhibitor initiation and long-term outcomes in patients with left ventricular systolic dysfunction. Eur J Heart Fail. 2014;16(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  58. Ewen S, Ukena C, Linz D, Schmieder RE, Bohm M, Mahfoud F. The sympathetic nervous system in chronic kidney disease. Curr Hypertens Rep. 2013;15(4):370–6.

    Article  PubMed  Google Scholar 

  59. Gluck Z, Reubi FC. Acute changes in renal function induced by bisoprolol, a new cardioselective beta-blocking agent. Eur J Clin Pharmacol. 1986;31(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  60. Castagno D, Jhund PS, McMurray JJ, Lewsey JD, Erdmann E, Zannad F, et al. Improved survival with bisoprolol in patients with heart failure and renal impairment: an analysis of the cardiac insufficiency bisoprolol study II (CIBIS-II) trial. Eur J Heart Fail. 2010;12(6):607–16.

    Article  CAS  PubMed  Google Scholar 

  61. Ghali JK, Wikstrand J, Van Veldhuisen DJ, Fagerberg B, Goldstein S, Hjalmarson A, et al. The influence of renal function on clinical outcome and response to beta-blockade in systolic heart failure: insights from Metoprolol CR/XL Randomized Intervention Trial in Chronic HF (MERIT-HF). J Card Fail. 2009;15(4):310–8.

    Article  PubMed  Google Scholar 

  62. Bohm M, Ewen S, Kindermann I, Linz D, Ukena C, Mahfoud F. Renal denervation and heart failure. Eur J Heart Fail. 2014;16(6):608–13.

    Article  PubMed  Google Scholar 

  63. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4.

    Article  CAS  PubMed  Google Scholar 

  64. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.

    Article  CAS  PubMed  Google Scholar 

  65. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol. 2003;41(12):2164–71.

    Article  CAS  PubMed  Google Scholar 

  66. Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 2003;63(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  67. Hornig B, Landmesser U, Kohler C, Ahlersmann D, Spiekermann S, Christoph A, et al. Comparative effect of ace inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation. 2001;103(6):799–805.

    Article  CAS  PubMed  Google Scholar 

  68. Jie KE, Verhaar MC, Cramer MJ, van der Putten K, Gaillard CA, Doevendans PA, et al. Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Ren Physiol. 2006;291(5):F932–44.

    Article  CAS  Google Scholar 

  69. Pergola PE, Raskin P, Toto RD, Meyer CJ, Huff JW, Grossman EB, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327–36.

    Article  CAS  PubMed  Google Scholar 

  70. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503.

    Article  PubMed  Google Scholar 

  71. Konstam MA, Gheorghiade M, Burnett Jr JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA J Am Med Assoc. 2007;297(12):1319–31.

    Article  CAS  Google Scholar 

  72. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365(1):32–43.

    Article  PubMed  Google Scholar 

  73. Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA J Am Med Assoc. 2013;310(23):2533–43.

    CAS  Google Scholar 

  74. Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, et al. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med. 2010;363(15):1419–28.

    Article  PubMed  Google Scholar 

  75. Bart BA, Goldsmith SR, Lee KL, Givertz MM, O’Connor CM, Bull DA, et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367(24):2296–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF): a randomised, placebo-controlled trial. Lancet. 2013;381(9860):29–39.

    Article  CAS  PubMed  Google Scholar 

  77. Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol. 2013;61(2):196–206.

    CAS  PubMed  Google Scholar 

  78. Heart Failure Society of A, Lindenfeld J, Albert NM, Boehmer JP, Collins SP, Ezekowitz JA, et al. HFSA 2010 comprehensive heart failure practice guideline. J Card Fail. 2010;16(6):e1–194.

    Article  PubMed  Google Scholar 

  79. Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987–96.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Petra Nijst and Wilfried Mullens declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Mullens.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nijst, P., Mullens, W. The Acute Cardiorenal Syndrome: Burden and Mechanisms of Disease. Curr Heart Fail Rep 11, 453–462 (2014). https://doi.org/10.1007/s11897-014-0218-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0218-4

Keywords

Navigation