Skip to main content
Log in

Ventricular Assist Devices: Is Destination Therapy a Viable Alternative in the Non-Transplant Candidate?

  • Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The topic of this article, stated a more familiar way, is whether left ventricular assist devices (LVADs) are ready for ‘Primetime’ as a therapeutic option in and of themselves. In order to provide an update and insight on this question, we briefly review from where the field has come, and in more detail describe its current state and where we are heading. We believe the short answer to this question is ‘Yes’, but like many things, a short answer is not adequate. Here we attempt to deliver a more comprehensive answer, providing some historical context, outlining the great achievements that have been made, as well as the many challenges that still remain before LVADs become a truly mainstream therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics–2012 update: a report from the american heart association. Circulation. 2012;125:e2–e220.

    Article  PubMed  Google Scholar 

  2. Stehlik J, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Twenty-eighth Adult Heart Transplant Report–2011. J Heart Lung Transplant. 2011;30:1078–94.

    Article  PubMed  Google Scholar 

  3. Institute of Medicine (U.S.), Committee to Evaluate the Artificial Heart Program of the National Heart Lung and Blood Institute, Hogness JR, VanAntwerp M, National Heart Lung and Blood Institute. The artificial heart: prototypes, policies, and patients. Washington, D.C: National Academy Press; 1991.

    Google Scholar 

  4. Levitt JA. Thermo Cardiosystems, Inc.; Premarket approval of the HeartMateRegister IP LVAS. In: Services HaH, ed.: Federal Register, 1996:51712, 51713.

  5. Oz MC, Goldstein DJ, Pepino P, et al. Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation. 1995;92:II169–73.

    PubMed  CAS  Google Scholar 

  6. Sun BC, Catanese KA, Spanier TB, et al. 100 long-term implantable left ventricular assist devices: the Columbia Presbyterian interim experience. Ann Thorac Surg. 1999;68:688–94.

    Article  PubMed  CAS  Google Scholar 

  7. Di Bella I, Pagani F, Banfi C, et al. Results with the Novacor assist system and evaluation of long-term assistance. Eur J Cardiothorac Surg. 2000;18:112–6.

    Article  PubMed  Google Scholar 

  8. Rose EA, Moskowitz AJ, Packer M, et al. The REMATCH trial: rationale, design, and end points. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure. Ann Thorac Surg. 1999;67:723–30.

    Article  PubMed  CAS  Google Scholar 

  9. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  PubMed  CAS  Google Scholar 

  10. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741–7.

    Article  PubMed  Google Scholar 

  11. Jessup M. Mechanical cardiac-support devices–dreams and devilish details. N Engl J Med. 2001;345:1490–3.

    Article  PubMed  CAS  Google Scholar 

  12. Dowling RD, Park SJ, Pagani FD, et al. HeartMate VE LVAS design enhancements and its impact on device reliability. Eur J Cardiothorac Surg. 2004;25:958–63.

    Article  PubMed  CAS  Google Scholar 

  13. Long JW, Kfoury AG, Slaughter MS, et al. Long-term destination therapy with the HeartMate XVE left ventricular assist device: improved outcomes since the REMATCH study. Congest Heart Fail. 2005;11:133–8.

    Article  PubMed  Google Scholar 

  14. El-Banayosy A, Arusoglu L, Kizner L, et al. Novacor left ventricular assist system versus Heartmate vented electric left ventricular assist system as a long-term mechanical circulatory support device in bridging patients: a prospective study. J Thorac Cardiovasc Surg. 2000;119:581–7.

    Article  PubMed  CAS  Google Scholar 

  15. Thomas CE, Jichici D, Petrucci R, Urrutia VC, Schwartzman RJ. Neurologic complications of the Novacor left ventricular assist device. Ann Thorac Surg. 2001;72:1311–5.

    Article  PubMed  CAS  Google Scholar 

  16. Saito S, Matsumiya G, Ichikawa H, Matsue H, Sekiya N, Sawa Y. Abdominal fascial enlargement to relieve obstruction of the duodenum caused by Novacor left ventricular assist system. J Heart Lung Transplant. 2007;26:759–62.

    Article  PubMed  Google Scholar 

  17. Samson D. Special report: cost-effectiveness of left-ventricular assist devices as destination therapy for end-stage heart failure. Technol Eval Cent Asses Program Exec Summ 2004;19:1.

    Google Scholar 

  18. Clegg AJ, Scott DA, Loveman E, et al. The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation. Health Technol Assess. 2005;9:1–132. iii-iv.

    CAS  Google Scholar 

  19. •• Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51. Landmark trial demonstrating clearly superior survival and durability of a continous flow LVAD (Heartmate II) compared to the previous destination LVAD.

    Article  PubMed  CAS  Google Scholar 

  20. Salzberg S, Lachat M, Zund G, et al. Left ventricular assist device as bridge to heart transplantation–lessons learned with the MicroMed DeBakey axial blood flow pump. Eur J Cardiothorac Surg. 2003;24:113–8.

    Article  PubMed  CAS  Google Scholar 

  21. Westaby S, Siegenthaler M, Beyersdorf F, et al. Destination therapy with a rotary blood pump and novel power delivery. Eur J Cardiothorac Surg. 2010;37:350–6.

    PubMed  Google Scholar 

  22. Esmore D, Kaye D, Spratt P, et al. A prospective, multicenter trial of the VentrAssist left ventricular assist device for bridge to transplant: safety and efficacy. J Heart Lung Transplant. 2008;27:579–88.

    Article  PubMed  Google Scholar 

  23. Strueber M, O’Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol. 2011;57:1375–82.

    Article  PubMed  Google Scholar 

  24. • Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200. This multi-center, prospective trial established the HeartWare HVAD in bridge to transplant patients and demonstrated excellent outcomes with over 90 % of patients being alive on device support or transplanted by 6 months.

    Article  PubMed  Google Scholar 

  25. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    Article  PubMed  CAS  Google Scholar 

  26. Fang JC. Rise of the machines–left ventricular assist devices as permanent therapy for advanced heart failure. N Engl J Med. 2009;361:2282–5.

    Article  PubMed  CAS  Google Scholar 

  27. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  28. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890–8.

    Article  PubMed  Google Scholar 

  29. Park SJ, Milano CA, Tatooles AJ, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5:241–8.

    Article  PubMed  Google Scholar 

  30. Kirklin JK, Naftel DC, Kormos RL, et al. The Fourth INTERMACS Annual Report: 4,000 implants and counting. J Heart Lung Transplant. 2012;31:117–26.

    Article  PubMed  Google Scholar 

  31. Russell SD, Boyle A, Sun B, et al. Risk of bleeding and stroke in 700 HeartMate II LVAD Outpatients. J Heart Lung Transplant 2011;30(4):Supplement, S66.

  32. Slaughter MS. Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res. 2010;3:618–24.

    Article  PubMed  Google Scholar 

  33. Swetz KM, Freeman MR, Mueller PS, Park SJ. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29:1081.

    Article  PubMed  Google Scholar 

  34. Boyle AJ, Russell SD, Teuteberg JJ, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28:881–7.

    Article  PubMed  Google Scholar 

  35. John R, Kamdar F, Liao K, et al. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;136:1318–23.

    Article  PubMed  Google Scholar 

  36. Grady KL, Meyer PM, Dressler D, et al. Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg. 2004;77:1321–7.

    Article  PubMed  Google Scholar 

  37. • Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826–34. This was an important work in that it is the largest and most thorough examination of the impact of continuous flow LVADs on quality of life and functional capacity. It demonstrated marked and durable improvements in essentially every measure.

    Article  PubMed  Google Scholar 

  38. Marcuccilli L, Casida JJ, Peters RM, Wright S. Sex and intimacy among patients with implantable left-ventricular assist devices. J Cardiovasc Nurs. 2011;26:504–11.

    PubMed  Google Scholar 

  39. Moskowitz AJ, Rose EA, Gelijns AC. The cost of long-term LVAD implantation. Ann Thorac Surg. 2001;71:S195–8. discussion S203-4.

    Article  PubMed  CAS  Google Scholar 

  40. Slaughter MS, Bostic R, Tong K, Russo M, Rogers JG. Temporal changes in hospital costs for left ventricular assist device implantation. J Card Surg. 2011;26:535–41.

    Article  PubMed  Google Scholar 

  41. • Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS. Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circ Heart Fail. 2012;5:10–6. This paper is important as it showed the drastically improving cost-effectiveness of LVADs as destination therapy.

    Article  PubMed  Google Scholar 

  42. Gremeaux V, Troisgros O, Benaim S, et al. Determining the minimal clinically important difference for the six-minute walk test and the 200-meter fast-walk test during cardiac rehabilitation program in coronary artery disease patients after acute coronary syndrome. Arch Phys Med Rehabil. 2011;92:611–9.

    Article  PubMed  Google Scholar 

  43. Majani G, Giardini A, Opasich C, et al. Effect of valsartan on quality of life when added to usual therapy for heart failure: results from the Valsartan Heart Failure Trial. J Card Fail. 2005;11:253–9.

    Article  PubMed  CAS  Google Scholar 

  44. Spertus J, Peterson E, Conard MW, et al. Monitoring clinical changes in patients with heart failure: a comparison of methods. Am Heart J. 2005;150:707–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

D.E. Lanfear is supported by grants from Thoratec and HeartWare for participation in clinical trials and registries.

Disclosure

T. Hrobowski: none; D.E. Lanfear: payment from Thoratec for lectures given during a fellow educational meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Lanfear.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hrobowski, T., Lanfear, D.E. Ventricular Assist Devices: Is Destination Therapy a Viable Alternative in the Non-Transplant Candidate?. Curr Heart Fail Rep 10, 101–107 (2013). https://doi.org/10.1007/s11897-012-0123-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0123-7

Keywords

Navigation