Skip to main content

Advertisement

Log in

Overview of Albumin Physiology and its Role in Pediatric Diseases

  • Pediatric Gastroenterology (S Orenstein and S Khan, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Albumin plays a critical role in a wide range of disease processes; however, the role of albumin in pediatric patients has not been well described. This article aims to review albumin physiology and kinetics in children, albumin’s impact on pediatric diseases, and the utility of albumin as a predictor of clinical outcome.

Recent Findings

Hypoalbuminemia is seen in a wide range of conditions, including protein-losing enteropathy, hepatic synthetic failure, malnutrition, inflammatory states, and renal disease. While the impact of hypoalbuminemia has been more extensively studied in adult patients, there is a relative paucity of literature in the pediatric population.

Summary

Hypoalbuminemia is a marker of poor outcome in critically ill children and those undergoing a wide range of medical interventions. Albumin infusions may be an effective therapy for fluid resuscitation and for patients with severe hypoalbuminemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Available.

References

  1. Caraceni P, Tufoni M, Bonavita ME. Clinical use of albumin. Blood Transfus. 2013;11(Suppl 4):s18–25.

    PubMed  PubMed Central  Google Scholar 

  2. Sethi PK, White CA, Cummings BS, Hines RN, Muralidhara S, Bruckner JV. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res. 2016;79(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  3. Levitt DG, Levitt MD. Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int J Gen Med. 2016;9:229–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Weaving G, Batstone GF, Jones RG. Age and sex variation in serum albumin concentration: an observational study. Ann Clin Biochem. 2016;53(Pt 1):106–11.

    Article  CAS  PubMed  Google Scholar 

  5. Kanakoudi F, Drossou V, Tzimouli V, Diamanti E, Konstantinidis T, Germenis A, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lee M, Youn S, Lim BK, Kim JS. Serum albumin concentrations and clinical disorders byGestational ages in preterm babies. Korean Journal of Pediatrics. 2005;48:148–53.

    CAS  Google Scholar 

  7. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth. 2000;85(4):599–610.

    Article  CAS  PubMed  Google Scholar 

  8. Peters TJ. All about Albumin. Biochemistry, Genetics, and Medical Applications. San Diego: Academic Press; 1996. p. 188–250.

  9. Caso G, Feiner J, Mileva I, Bryan LJ, Kelly P, Autio K, et al. Response of albumin synthesis to oral nutrients in young and elderly subjects. Am J Clin Nutr. 2007;85(2):446–51.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Q, Lu M, Monks BR, Birnbaum MJ. Insulin is required to maintain albumin expression by inhibiting Forkhead box O1 protein. J Biol Chem. 2016;291(5):2371–8.

    Article  CAS  PubMed  Google Scholar 

  11. Schnitzer JE, Bravo J. High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. J Biol Chem. 1993;268(10):7562–70.

    Article  CAS  PubMed  Google Scholar 

  12. Guthe HJ, Indrebø M, Nedrebø T, Norgård G, Wiig H, Berg A. Interstitial fluid colloid osmotic pressure in healthy children. PLoS One. 2015;10(4):e0122779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee P, Wu X. Review: modifications of human serum albumin and their binding effect. Curr Pharm Des. 2015;21:1862–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amin SB. Bilirubin binding capacity in the preterm neonate. Clin Perinatol. 2016;43(2):241–57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Taverna M, Marie AL, Mira JP, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Neuzil J, Stocker R. Free and albumin-bound bilirubin are efficient co-antioxidants for alpha-tocopherol, inhibiting plasma and low density lipoprotein lipid peroxidation. J Biol Chem. 1994;269(24):16712–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mertens L, Hagler DJ, Sauer U, Somerville J, Gewillig M. Protein-losing enteropathy after the Fontan operation: an international multicenter study. PLE study group. J Thorac Cardiovasc Surg. 1998;115(5):1063–73.

    Article  CAS  PubMed  Google Scholar 

  18. Braamskamp MJ, Dolman KM, Tabbers MM. Clinical practice. Protein-losing enteropathy in children. Eur J Pediatr. 2010;169(10):1179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feldt RH, Driscoll DJ, Offord KP, Cha RH, Perrault J, Schaff HV, et al. Protein-losing enteropathy after the Fontan operation. J Thorac Cardiovasc Surg. 1996;112(3):672–80.

    Article  CAS  PubMed  Google Scholar 

  20. Pundi KN, Johnson JN, Dearani JA, Pundi KN, Li Z, Hinck CA, et al. 40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J Am Coll Cardiol. 2015;66(15):1700–10.

    Article  PubMed  Google Scholar 

  21. Levitt DG, Levitt MD. Protein losing enteropathy: comprehensive review of the mechanistic association with clinical and subclinical disease states. Clin Exp Gastroenterol. 2017;10:147–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stephen J, Vilboux T, Haberman Y, Pri-Chen H, Pode-Shakked B, Mazaheri S, et al. Congenital protein losing enteropathy: an inborn error of lipid metabolism due to DGAT1 mutations. Eur J Hum Genet. 2016;24(9):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altinel Acoglu E, Akcaboy M, Melek Oguz M, Kilic M, Zorlu P, Senel S. Hypoalbuminemia and malnutrition associated with Cow's Milk allergy: a case report. Iran Red Crescent Med J. 2016;18(6):e34810.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hwang JB, Lee SH, Kang YN, Kim SP, Suh SI, Kam S. Indexes of suspicion of typical cow's milk protein-induced enterocolitis. J Korean Med Sci. 2007;22(6):993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yasuda JL, Rufo PA. Protein-losing enteropathy in the setting of severe Iron deficiency Anemia. J Investig Med High Impact Case Rep. 2018;6:2324709618760078.

    PubMed  PubMed Central  Google Scholar 

  26. Tracy MS, Yasuda JL, Rufo PA. Protein-losing enteropathy in the setting of Iron deficiency Anemia: a case series. JPGN Reports. 2020;1(2):e009.

    Article  Google Scholar 

  27. Eastham EJ. Walker WA effect of cow's milk on the gastrointestinal tract: a persistent dilemma for the pediatrician. Pediatrics. 1977;60(4):477–81.

    CAS  PubMed  Google Scholar 

  28. Wong CS, Hingorani S, Gillen DL, Sherrard DJ, Watkins SL, Brandt JR, et al. Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int. 2002;61(2):630–7.

    Article  PubMed  Google Scholar 

  29. Honda M, Kamiyama Y, Kawamura K, Kawahara K, Shishido S, Nakai H, et al. Growth, development and nutritional status in Japanese children under 2 years on continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1995;9(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  30. Roy RR, Islam MR, Jesmin T, Matin A, Islam MR. Prognostic value of biochemical and hematological parameters in children with nephrotic syndrome. J Shaheed Suhrawardy Med Coll. 2013;5(2):95–8.

    Article  Google Scholar 

  31. Mishra OP, Abhinay A, Mishra RN, Prasad R, Pohl M. Can we predict relapses in children with idiopathic steroid-sensitive nephrotic syndrome? J Trop Pediatr. 2013;59(5):343–9.

    Article  PubMed  Google Scholar 

  32. Fagundes ED, Ferreira AR, Roquete ML, Penna FJ, Goulart EM, Figueiredo Filho PP, et al. Clinical and laboratory predictors of esophageal varices in children and adolescents with portal hypertension syndrome. J Pediatr Gastroenterol Nutr. 2008;46:178–83.

    Article  PubMed  Google Scholar 

  33. Gana JC, Turner D, Roberts EA, Ling SC. Derivation of a clinical prediction rule for the noninvasive diagnosis of varices in children. J Pediatr Gastroenterol Nutr. 2010;50:188–93.

    Article  PubMed  Google Scholar 

  34. Pinto RB, Schneider AC, da Silveira TR. Cirrhosis in children and adolescents: an overview. World J Hepatol. 2015;7(3):392–405.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Minchiotti L, Caridi G, Campagnoli M, Lugani F, Galliano M, Kragh-Hansen U. Diagnosis, phenotype, and molecular genetics of congenital Analbuminemia. Front Genet. 2019;10:336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suppressa P, Carbonara C, Lugani F, Campagnoli M, Troiano T, Minchiotti L, et al. Congenital analbuminemia in a patient affected by hypercholesterolemia: a case report. World J Clin Cases. 2019;7(4):466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Del Ben M, Angelico F, Loffredo L, Violi F. Treatment of a patient with congenital analbuminemia with atorvastatin and albumin infusion. World J Clin Cases. 2013;1(1):44–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yokoseki A, Ishihara T, Koyama A, Shiga A, Yamada M, Suzuki C, et al. Genotype-phenotype correlations in early onset ataxia with ocular motor apraxia and hypoalbuminaemia. Brain. 2011;134(Pt 5):1387–99.

    Article  PubMed  Google Scholar 

  39. Renaud M, Moreira MC, Ben Monga B, Rodriguez D, Debs R, Charles P, et al. Clinical, biomarker, and molecular delineations and genotype-phenotype correlations of Ataxia with oculomotor apraxia type 1. JAMA Neurol. 2018;75(4):495–502.

    Article  PubMed  PubMed Central  Google Scholar 

  40. JG L. Congenital disorders of N-glycosylation including diseases associated with O- as well as N-glycosylation defects. Pediatr Res 2006;60:643–656.

  41. Chang IJ, He M, Lam CT. Congenital disorders of glycosylation. Ann Transl Med. 2018;6(24):477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bourke CD, Berkley JA, Prendergast AJ. Immune dysfunction as a cause and consequence of malnutrition. Trends Immunol. 2016;37(6):386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lark RK, Williams CL, Stadler D, Simpson SL, Henderson RC, Samson-Fang L, et al. Serum prealbumin and albumin concentrations do not reflect nutritional state in children with cerebral palsy. J Pediatr. 2005;147(5):695–7.

    Article  CAS  PubMed  Google Scholar 

  44. Soeters PB, Wolfe RR, Shenkin A. Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr. 2019;43(2):181–93.

    Article  CAS  PubMed  Google Scholar 

  45. De Bandt JP. Understanding the pathophysiology of malnutrition for better treatment. Ann Pharm Fr. 2015;73:332–5.

    Article  PubMed  CAS  Google Scholar 

  46. Gopalan C. Kwashiorkor and marasmus: evolution and distinguishing features. 1968. Natl Med J India. 1992;5:145–51.

    CAS  PubMed  Google Scholar 

  47. Morlese JF, Forrester T, Badaloo A, Del Rosario M, Frazer M, Jahoor F. Albumin kinetics in edematous and nonedematous protein-energy malnourished children. Am J Clin Nutr. 1996;64(6):952–9.

    Article  CAS  PubMed  Google Scholar 

  48. Narayanan V, Gaudiani JL, Mehler PS. Serum albumin levels may not correlate with weight status in severe anorexia nervosa. Eat Disord. 2009;17(4):322–6.

    Article  PubMed  Google Scholar 

  49. Winston AP. The clinical biochemistry of anorexia nervosa. Ann Clin Biochem. 2012;49(Pt 2):132–43.

    Article  CAS  PubMed  Google Scholar 

  50. Herzog W, Deter HC, Fiehn W, Petzold E. Medical findings and predictors of long-term physical outcome in anorexia nervosa: a prospective, 12-year follow-up study. Psychol Med. 1997;27(2):269–79.

    Article  CAS  PubMed  Google Scholar 

  51. Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17(6):432–7.

    Article  PubMed  Google Scholar 

  52. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Qian SY, Liu J. Relationship between serum albumin level and prognosis in children with sepsis, severe sepsis or septic shock. Zhonghua Er Ke Za Zhi. 2012;50(3):184–7.

    PubMed  Google Scholar 

  54. Tiwari LK, Singhi S, Jayashree M, Baranwal AK, Bansal A. Hypoalbuminemia in critically sick children. Indian J Crit Care Med. 2014;18(9):565–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kim YS, Sol IS, Kim MJ, Kim SY, Kim JD, Kim YH, et al. Serum albumin as a biomarker of poor prognosis in the pediatric patients in intensive care unit. Korean J Crit Care Med. 2017;32(4):347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leite HP, Rodrigues da Silva AV, de Oliveira Iglesias SB, Koch Nogueira PC. Serum albumin is an independent predictor of clinical outcomes in critically ill children. Pediatr Crit Care Med 2016;17(2):e50–e57.

  57. Horowitz IN, Tai K. Hypoalbuminemia in critically ill children. Arch Pediatr Adolesc Med. 2007;161(11):1048–52.

    Article  PubMed  Google Scholar 

  58. Leite HP, Fisberg M, de Carvalho WB, de Camargo Carvalho AC. Serum albumin and clinical outcome in pediatric cardiac surgery. Nutrition. 2005;21(5):553–8.

    Article  CAS  PubMed  Google Scholar 

  59. Schiller O, Goldshmid O, Mowassi S, Shostak E, Manor O, Amir G, et al. The utility of albumin level as a marker of postoperative course in infants undergoing repair of congenital heart disease. Pediatr Cardiol. 2020;41(5):939–46.

    Article  PubMed  Google Scholar 

  60. Henry BM, Borasino S, Ortmann L, Figueroa M, Rahman AKMF, Hock KM, et al. Perioperative serum albumin and its influence on clinical outcomes in neonates and infants undergoing cardiac surgery with cardiopulmonary bypass: a multi-Centre retrospective study. Cardiol Young. 2019;29(6):761–7.

    Article  PubMed  Google Scholar 

  61. Castleberry C, White-Williams C, Naftel D, Tresler MA, Pruitt E, Miyamoto SD, et al. Hypoalbuminemia and poor growth predict worse outcomes in pediatric heart transplant recipients. Pediatr Transplant. 2014;18(3):280–7.

    Article  PubMed  Google Scholar 

  62. Tancredi DJ, Butani L. Pretransplant serum albumin is an independent predictor of graft failure in pediatric renal transplant recipients. J Pediatr. 2014;164(3):602–6.

    Article  CAS  PubMed  Google Scholar 

  63. Teagarden AM, Skiles JL, Beardsley AL, Hobson MJ, Moser EAS, Renbarger JL, et al. Low serum albumin levels prior to pediatric allogeneic HCT are associated with increased need for critical care interventions and increased 6-month mortality. Pediatr Transplant. 2017;21(6). https://doi.org/10.1111/petr.13016.

  64. Wayman KI, Cox KL, Esquivel CO. Neurodevelopmental outcome of young children with extrahepatic biliary atresia 1 year after liver transplantation. J Pediatr. 1997;131(6):894–8.

    Article  CAS  PubMed  Google Scholar 

  65. Myers RP, Shaheen AA, Faris P, Aspinall AI, Burak KW. Revision of MELD to include serum albumin improves prediction of mortality on the liver transplant waiting list. PLoS One. 2013;8(1):e51926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McDiarmid SV, Anand R, Lindblad AS. Principal investigators and institutions of the studies of pediatric liver transplantation (SPLIT) research group. Development of a pediatric end-stage liver disease score to predict poor outcome in children awaiting liver transplantation. Transplantation. 2002;74(2):173–81.

    Article  PubMed  Google Scholar 

  67. Jiang L, Jiang S, Zhang M, Zheng Z, Ma Y. Albumin versus other fluids for fluid resuscitation in patients with sepsis: a meta-analysis. PLoS One. 2014;9(12):e114666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dingankar AR, Cave DA, Anand V, Sivarajan VB, Nahirniak S, Sheppard C, et al. Albumin 5% versus crystalloids for fluid resuscitation in children after cardiac surgery. Pediatr Crit Care Med. 2018;19(9):846–53.

    Article  PubMed  Google Scholar 

  69. Romanowski KS, Palmieri TL. Pediatric burn resuscitation: past, present, and future. Burns Trauma. 2017;5(26).

  70. Müller Dittrich MH. Brunow de Carvalho W, lopes Lavado E. evaluation of the "early" use of albumin in children with extensive burns: a randomized controlled trial. Pediatr Crit Care Med. 2016;17(6):e280–6.

    Article  PubMed  Google Scholar 

  71. Faraklas I, Lam U, Cochran A, Stoddard G, Saffle J. Colloid normalizes resuscitation ratio in pediatric burns. J Burn Care Res. 2011;32(1):91–7.

    Article  PubMed  Google Scholar 

  72. Greenhalgh DG, Housinger TA, Kagan RJ, Rieman M, James L, Novak S, et al. Maintenance of serum albumin levels in pediatric burn patients: a prospective, randomized trial. J Trauma. 1995;39(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  73. Kapur G, Valentini RP, Imam AA, Mattoo TK. Treatment of severe edema in children with nephrotic syndrome with diuretics alone--a prospective study. Clin J Am Soc Nephrol. 2009;4:907–13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossettias G. Italian Society of Transfusion Medicine and Immunohaematology (SIMTI). Recommendations for the use of albumin and immunoglobulins. Blood Transfus. 2009;7(3):216–34.

    PubMed  PubMed Central  Google Scholar 

  75. Vincent JL, Wilkes MM, Navickis RJ. Safety of human albumin--serious adverse events reported worldwide in 1998-2000. Br J Anaesth. 2003;91(5):625–30.

    Article  CAS  PubMed  Google Scholar 

  76. Dharmaraj R, Hari P, Bagga A. Randomized cross-over trial comparing albumin and frusemide infusions in nephrotic syndrome. Pediatr Nephrol. 2009;24:775–82.

    Article  PubMed  Google Scholar 

  77. Yoshimura A, Ideura T, Iwasaki S, Taira T, Koshikawa S. Aggravation of minimal change nephrotic syndrome by administration of human albumin. Clin Nephrol. 1992;37:109–14.

    CAS  PubMed  Google Scholar 

Download references

Code Availability

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles B. Chen.

Ethics declarations

Conflict of Interest

Charles B. Chen, Bilasan Hammo, Jessica Barry, and Kadakkal Radhakrishnan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Gastroenterology

We attest that the figures and tables are original and have never been published before.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.B., Hammo, B., Barry, J. et al. Overview of Albumin Physiology and its Role in Pediatric Diseases. Curr Gastroenterol Rep 23, 11 (2021). https://doi.org/10.1007/s11894-021-00813-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11894-021-00813-6

Keywords

Navigation