Skip to main content

Advertisement

Log in

Duodenal Chemosensing of Short-Chain Fatty Acids: Implications for GI Diseases

  • Stomach and Duodenum (J Pisegna and J Benhammou, Section Editors)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Short-chain fatty acids (SCFAs), the main bacterial fermentation products in the hindgut of hindgut fermenters, are also present in the foregut lumen. We discuss the impact of SCFAs in the duodenal defense mechanisms and in the gastrointestinal (GI) pathogenesis.

Recent Findings

Luminal SCFAs augment the duodenal mucosal defenses via release of serotonin (5-HT) and glucagon-like peptide-2 (GLP-2) from enteroendocrine cells. Released GLP-2 protects the small intestinal mucosa from nonsteroidal anti-inflammatory drug-induced enteropathy. SCFAs are also rapidly absorbed via SCFA transporters and interact with afferent and myenteric nerves. Excessive SCFA signals with 5-HT3 receptor overactivation may be implicated in the pathogenesis of irritable bowel syndrome symptoms. SCFA production exhibits diurnal rhythms with host physiological responses, suggesting that oral SCFA treatment may adjust the GI clocks.

Summary

SCFAs are not only a source of energy but also signaling molecules for the local regulation of the GI tract and systemic regulation via release of gut hormones. Targeting SCFA signals may be a novel therapeutic for GI diseases and metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278:11312–9.

    Article  CAS  Google Scholar 

  2. • Kaji I, Iwanaga T, Watanabe M, Guth PH, Engel E, Kaunitz JD, et al. SCFA transport in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2015;308:G188–97 This study provides the evidence of rapid, electrogenic SCFA absorption via apical SMCT-1 in the duodenal mucosa.

    Article  CAS  Google Scholar 

  3. Hoverstad T, Bjorneklett A, Midtvedt T, Fausa O, Bohmer T. Short-chain fatty acids in the proximal gastrointestinal tract of healthy subjects. Scand J Gastroenterol. 1984;19:1053–8.

    Article  CAS  Google Scholar 

  4. Botta GA, Radin L, Costa A, Schito G, Blasi G. Gas-liquid chromatography of the gingival fluid as an aid in periodontal diagnosis. J Periodontal Res. 1985;20:450–7.

    Article  CAS  Google Scholar 

  5. Iwanaga T, Kishimoto A. Cellular distributions of monocarboxylate transporters: a review. Biomed Res. 2015;36:279–301.

    Article  CAS  Google Scholar 

  6. •• Akiba Y, Inoue T, Kaji I, Higashiyama M, Narimatsu K, Iwamoto K, et al. Short-chain fatty acid sensing in rat duodenum. J Physiol. 2015;593:585–99 This study provides for the first time that luminal SCFAs stimulate duodenal mucosa to enhance mucosal defense via distinct 5-HT and GLP-2 pathways via SCFA receptors.

    Article  CAS  Google Scholar 

  7. •• Akiba Y, Maruta K, Narimatsu K, Said H, Kaji I, Kuri A, et al. FFA2 activation combined with ulcerogenic COX inhibition induces duodenal mucosal injury via the 5-HT pathway in rats. Am J Physiol Gastrointest Liver Physiol. 2017;313:G117–28 This study links 5-HT release via FFA2 activation to duodenal mucosal injury with indomethacin treatment, implicating in 5-HT-related IBS symptom generation.

    Article  Google Scholar 

  8. Said H, Akiba Y, Narimatsu K, Maruta K, Kuri A, Iwamoto K, et al. FFA3 activation stimulates duodenal bicarbonate secretion and prevents NSAID-induced enteropathy via the GLP-2 pathway in rats. Dig Dis Sci. 2017;62:1944–52.

    Article  CAS  Google Scholar 

  9. Illman RJ, Topping DL, Trimble RP. Effects of food restriction and starvation-refeeding on volatile fatty acid concentrations in the rat. J Nutr. 1986;116:1694–700.

    Article  CAS  Google Scholar 

  10. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–7.

    Article  CAS  Google Scholar 

  11. Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.

    Article  CAS  Google Scholar 

  12. Skutches CL, Holroyde CP, Myers RN, Paul P, Reichard GA. Plasma acetate turnover and oxidation. J Clin Invest. 1979;64:708–13.

    Article  CAS  Google Scholar 

  13. Ostman E, Granfeldt Y, Persson L, Bjorck I. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. Eur J Clin Nutr. 2005;59:983–8.

    Article  CAS  Google Scholar 

  14. Brighenti F, Castellani G, Benini L, Casiraghi MC, Leopardi E, Crovetti R, et al. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. Eur J Clin Nutr. 1995;49:242–7.

    CAS  PubMed  Google Scholar 

  15. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG Jr. Absorption of short-chain fatty acids by the colon. Gastroenterology. 1980;78:1500–7.

    Article  CAS  Google Scholar 

  16. Braden B, Adams S, Duan LP, Orth KH, Maul FD, Lembcke B, et al. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology. 1995;108:1048–55.

    Article  CAS  Google Scholar 

  17. Sjölund K, Sandén G, Håkanson R, Sundler F. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.

    PubMed  Google Scholar 

  18. Akiba Y, Kaunitz JD. Duodenal luminal chemosensing; acid, ATP, and nutrients. Curr Pharm Des. 2014;20:2760–5.

    Article  Google Scholar 

  19. Akiba Y, Guth PH, Engel E, Nastaskin I, Kaunitz JD. Acid-sensing pathways of rat duodenum. Am J Physiol Gastrointest Liver Physiol. 1999;277:G268–74.

    Article  CAS  Google Scholar 

  20. Akiba Y, Ghayouri S, Takeuchi T, Mizumori M, Guth PH, Engel E, et al. Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2 in rat duodenum. Gastroenterology. 2006;131:142–52.

    Article  CAS  Google Scholar 

  21. Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol. 2009;587:3651–63.

    Article  CAS  Google Scholar 

  22. Engelstoft MS, Egerod KL, Holst B, Schwartz TW. A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab. 2008;8:447–9.

    Article  CAS  Google Scholar 

  23. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. BiomedRes. 2009;30:149–56.

    CAS  Google Scholar 

  24. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol. 2008;39:135–42.

    Article  CAS  Google Scholar 

  25. Akiba Y, Inoue T, Kaji I, Higashiyama M, Guth PH, Engel E, et al. Short-chain fatty acid sensing in rat duodenum. J Physiol. 2014;593:585–99.

    Article  Google Scholar 

  26. •• Wan Saudi WS, Sjöblom M. Short-chain fatty acids augment rat duodenal mucosal barrier function. Exp Physiol. 2017;102:791–803 This study provides that luminal SCFAs rather than IV SCFAs enhance duodenal defense mechanisms.

    Article  CAS  Google Scholar 

  27. Wang JH, Inoue T, Higashiyama M, Guth PH, Engel E, Kaunitz JD, et al. Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats. J Pharmacol Exp Ther. 2011;339:464–73.

    Article  CAS  Google Scholar 

  28. Guan X, Karpen HE, Stephens J, Bukowski JT, Niu S, Zhang G, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology. 2006;130:150–64.

    Article  CAS  Google Scholar 

  29. Kaji I, Iwanaga T, Watanabe M, Guth PH, Engel E, Kaunitz JD, et al. SCFA transport in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2014;308:G188–97.

    Article  Google Scholar 

  30. Kaji I, Akiba Y, Konno K, Watanabe M, Kimura S, Iwanaga T, et al. Neural FFA3 activation inversely regulates anion secretion evoked by nicotinic ACh receptor activation in rat proximal colon. J Physiol. 2016;594:3339–52.

    Article  CAS  Google Scholar 

  31. Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1–8.

    Article  CAS  Google Scholar 

  32. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O'Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60:902–14.

    Article  CAS  Google Scholar 

  33. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–705.

    Article  CAS  Google Scholar 

  34. Inoue T, Wang JH, Higashiyama M, Rudenkyy S, Higuchi K, Guth PH, et al. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum. Am J Physiol Gastrointest Liver Physiol. 2012;303:G810–6.

    Article  CAS  Google Scholar 

  35. Higuchi K, Umegaki E, Watanabe T, Yoda Y, Morita E, Murano M, et al. Present status and strategy of NSAIDs-induced small bowel injury. J Gastroenterol. 2009;44:879–88.

    Article  Google Scholar 

  36. Inoue T, Higashiyama M, Kaji I, Rudenkyy S, Higuchi K, Guth PH, et al. Dipeptidyl peptidase IV inhibition prevents the formation and promotes the healing of indomethacin-induced intestinal ulcers in rats. Dig Dis Sci. 2014;59:1286–95.

    Article  CAS  Google Scholar 

  37. Kaji I, Akiba Y, Furuyama T, Adelson DW, Iwamoto K, Watanabe M, et al. Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol Motil, in press. 2017.

  38. Fujimiya M, Okumiya K, Kuwahara A. Immunoelectron microscopic study of the luminal release of serotonin from rat enterochromaffin cells induced by high intraluminal pressure. Histochem Cell Biol. 1997;108:105–13.

    Article  CAS  Google Scholar 

  39. Kellum JM, Albuquerque FC, Stoner MC, Harris RP. Stroking human jejunal mucosa induces 5-HT release and Cl- secretion via afferent neurons and 5-HT4 receptors. Am J Phys. 1999;277:G515–20.

    CAS  Google Scholar 

  40. Braun T, Voland P, Kunz L, Prinz C, Gratzl M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology. 2007;132:1890–901.

    Article  CAS  Google Scholar 

  41. Kellum JM, Donowitz M, Cerel A, Wu J. Acid and isoproterenol cause serotonin release by acting on opposite surfaces of duodenal mucosa. J Surg Res. 1984;36:172–6.

    Article  CAS  Google Scholar 

  42. Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Physiol Regul Integr Comp Physiol. 2003;284:R1269–76.

    Article  CAS  Google Scholar 

  43. Turvill JL, Connor P, Farthing MJ. The inhibition of cholera toxin-induced 5-HT release by the 5-HT3 receptor antagonist, granisetron, in the rat. Br J Pharmacol. 2000;130:1031–6.

    Article  CAS  Google Scholar 

  44. Hagbom M, Istrate C, Engblom D, Karlsson T, Rodriguez-Diaz J, Buesa J, et al. Rotavirus stimulates release of serotonin (5-HT) from human enterochromaffin cells and activates brain structures involved in nausea and vomiting. PLoS Pathog. 2011;7:e1002115.

    Article  CAS  Google Scholar 

  45. Cubeddu LX. Serotonin mechanisms in chemotherapy-induced emesis in cancer patients. Oncology. 1996;53(Suppl 1):18–25.

    Article  Google Scholar 

  46. Lee KJ, Tack J. Duodenal implications in the pathophysiology of functional dyspepsia. J Neurogastroenterol Motil. 2010;16:251–7.

    Article  Google Scholar 

  47. Beattie DT, Smith JA. Serotonin pharmacology in the gastrointestinal tract: a review. Naunyn Schmiedeberg's Arch Pharmacol. 2008;377:181–203.

    Article  CAS  Google Scholar 

  48. Bharucha AE, Camilleri M, Burton DD, Thieke SL, Feuerhak KJ, Basu A, et al. Increased nutrient sensitivity and plasma concentrations of enteral hormones during duodenal nutrient infusion in functional dyspepsia. Am J Gastroenterol. 2014;109:1910–20.

    Article  CAS  Google Scholar 

  49. van Boxel OS, ter Linde JJ, Siersema PD, Smout AJ. Role of chemical stimulation of the duodenum in dyspeptic symptom generation. Am J Gastroenterol. 2010;105:803–11.

    Article  Google Scholar 

  50. Glisic R, Koko V, Todorovic V, Drndarevic N, Cvijic G. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats. Regul Pept. 2006;136:30–9.

    Article  CAS  Google Scholar 

  51. Fukudo S, Kinoshita Y, Okumura T, Ida M, Akiho H, Nakashima Y, et al. Ramosetron reduces symptoms of irritable bowel syndrome with diarrhea and improves quality of life in women. Gastroenterology. 2016;150:358–66.

    Article  CAS  Google Scholar 

  52. Garsed K, Chernova J, Hastings M, Lam C, Marciani L, Singh G, et al. A randomised trial of ondansetron for the treatment of irritable bowel syndrome with diarrhoea. Gut. 2014;63:1617–25.

    Article  CAS  Google Scholar 

  53. Ghoshal UC, Srivastava D, Misra A, Ghoshal U. A proof-of-concept study showing antibiotics to be more effective in irritable bowel syndrome with than without small-intestinal bacterial overgrowth: a randomized, double-blind, placebo-controlled trial. Eur J Gastroenterol Hepatol. 2016;28:281–9.

    Article  CAS  Google Scholar 

  54. Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95:3503–6.

    Article  CAS  Google Scholar 

  55. Bohn L, Storsrud S, Liljebo T, Collin L, Lindfors P, Tornblom H, et al. Diet low in FODMAPs reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a randomized controlled trial. Gastroenterology. 2015;149:1399–407.

    Article  Google Scholar 

  56. Barreto JC, Smith GS, Tornwall MS, Miller TA. Protective action of oral N-acetylcysteine against gastric injury: role of hypertonic sodium. Am J Physiol. 1993;264:G422–6.

    CAS  PubMed  Google Scholar 

  57. Aihara E, Sasaki Y, Ise F, Kita K, Nomura Y, Takeuchi K. Distinct mechanisms of acid-induced HCO3 - secretion in normal and slightly permeable stomachs. Am J Physiol Gastrointest Liver Physiol. 2006;291:G464–71.

    Article  CAS  Google Scholar 

  58. Black JW, Fisher EW, Smith AN. The effects of 5-hydroxytryptamine on gastric secretion in anaesthetized dogs. J Physiol. 1958;141:27–34.

    Article  CAS  Google Scholar 

  59. Canfield SP, Spencer JE. The inhibitory effects of 5-hydroxytryptamine on gastric acid secretion by the rat isolated stomach. Br J Pharmacol. 1983;78:123–9.

    Article  CAS  Google Scholar 

  60. Kaji I, Akiba Y, Kaunitz JD, Karaki S, Kuwahara A. Differential expression of short-chain fatty acid receptor FFA2 and FFA3 in foregut. Gastroenterology. 2012;142:S494.

    Article  Google Scholar 

  61. Said HM, Akiba Y, Kaji I, Narimatsu K, Kaunitz JD. FFA2 activation suppresses basal and stimulated gastric acid secretion via 5-HT3 receptor activation in rats. Gastroenterology. 2015;148:S-315.

    Article  Google Scholar 

  62. Lai YC, Ho Y, Huang KH, Tsai LH. Effects of serotonin on acid secretion in isolated rat stomach: the role of 5-HT3 receptors. Chin J Physiol. 2009;52:395–405.

    Article  CAS  Google Scholar 

  63. • Segers A, Desmet L, Thijs T, Verbeke K, Tack J, Depoortere I. The circadian clock regulates the diurnal levels of microbial short-chain fatty acids and their rhythmic effects on colon contractility in mice. Acta Physiol (Oxf). 2018:e13193 This study reports diurnal fluctuation of fecal SCFAs synchronized with colonic myenteric neural FFA3 expression, suggesting that luminal SCFA production regulates SCFA receptor expression.

  64. •• Tahara Y, Yamazaki M, Sukigara H, Motohashi H, Sasaki H, Miyakawa H, et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci Rep. 2018;8:1395 This study provides a new concept that oral SCFA treatment facilitates peripheral clock adjustment, suggesting that the microbiome and host organs are communicating with circadian rhythmicity.

    Article  Google Scholar 

Download references

Funding

This work was supported by a Department of Veterans Affairs Merit Review Award and National Institute of Diabetes and Digestive and Kidney Diseases Grant R01-DK-54221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Kaunitz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Stomach and Duodenum

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwasaki, M., Akiba, Y. & Kaunitz, J.D. Duodenal Chemosensing of Short-Chain Fatty Acids: Implications for GI Diseases. Curr Gastroenterol Rep 21, 35 (2019). https://doi.org/10.1007/s11894-019-0702-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-019-0702-9

Keywords

Navigation