Skip to main content

Advertisement

Log in

Environmental Triggers for IBD

  • Inflammatory Bowel Disease (S Hanauer, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The fundamental elucidation of how environmental influences provoke the initiation of disease as well as flares of inflammatory bowel disease (IBD) remains incomplete. The current understanding of these diseases suggests that ulcerative colitis (UC) and Crohn’s disease (CD) result from poorly defined interactions between genetic and environmental factors which culminate in the pathologic effects and clinical manifestations of these diseases. The genetic variant appears not sufficient itself to lead to the development of the clinical disease, but likely must combine with the environmental factors. The intestinal microbiome is pivotal to IBD development. A greater understanding of the contribution of these factors to dysbiosis is critical, and we aspire to restoring a healthy microbiome to treat flares and ideally prevent the development of IBD and its complications. This article aims to place the environmental influences in the context of their potential contribution to the development of the pathophysiology of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kabi A et al. Digesting the genetics of inflammatory bowel disease: insights from studies of autophagy risk genes. Inflamm Bowel Dis. 2012;18(4):782–92.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28:573–621.

    Article  CAS  PubMed  Google Scholar 

  3. Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369(9573):1627–40.

    Article  CAS  PubMed  Google Scholar 

  4. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34.

    Article  CAS  PubMed  Google Scholar 

  5. Jostins L et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Arimura Y, et al Characteristics of Japanese inflammatory bowel disease susceptibility loci. J Gastroenterol. 2013. doi:10.1007/s00535-013-0866-2.

  7. Mahurkar S et al. Common variants in NOD2 and IL23R are not associated with inflammatory bowel disease in Indians. J Gastroenterol Hepatol. 2011;26(4):694–9.

    Article  CAS  PubMed  Google Scholar 

  8. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Forbes A, Kalantzis T. Crohn’s disease: the cold chain hypothesis. Int J Color Dis. 2006;21(5):399–401.

    Article  Google Scholar 

  10. Funkhouser LJ, Bordenstein SR. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 2013;11(8):e1001631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dominguez-Bello MG et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bager P et al. Cesarean section and offspring’s risk of inflammatory bowel disease: a national cohort study. Inflamm Bowel Dis. 2012;18(5):857–62.

    Article  PubMed  Google Scholar 

  13. Sonntag B et al. Preterm birth but not mode of delivery is associated with an increased risk of developing inflammatory bowel disease later in life. Inflamm Bowel Dis. 2007;13(11):1385–90.

    Article  PubMed  Google Scholar 

  14. Cabrera-Rubio R et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–51.

    Article  CAS  PubMed  Google Scholar 

  15. Khalili H et al. Early life factors and risk of inflammatory bowel disease in adulthood. Inflamm Bowel Dis. 2013;19(3):542–7.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Spooren CE et al. Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 2013;38(10):1172–87.

    Article  CAS  PubMed  Google Scholar 

  17. Castiglione F et al. Risk factors for inflammatory bowel diseases according to the “hygiene hypothesis”: a case-control, multi-centre, prospective study in Southern Italy. J Crohn’s Colitis. 2012;6(3):324–9.

    Article  Google Scholar 

  18. Roberts CL et al. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut. 2010;59(10):1331–9.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  20. Jakobsen C et al. Environmental factors and risk of developing paediatric inflammatory bowel disease—a population based study 2007–2009. J Crohn’s Colitis. 2013;7(1):79–88.

    Article  Google Scholar 

  21. Ananthakrishnan AN et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145(5):970–7.

    Article  CAS  PubMed  Google Scholar 

  22. Tsiountsioura M, et al Detailed assessment of nutritional status and eating patterns in children with gastrointestinal diseases attending an outpatients clinic and contemporary healthy controls. Eur J Clin Nutr. 2014;68(6):700–6.

  23. Burisch J, et al Environmental factors in a population-based inception cohort of inflammatory bowel disease patients in Europe—an ECCO-EpiCom study. J Crohns Colitis. 2014;8(7):607–16.

  24. Palmblad J, Gyllenhammar H. Effect of dietary lipids on immunity and inflammation. Review article. APMIS. 1988;96(7):571–83.

    Article  CAS  PubMed  Google Scholar 

  25. Costea I et al. Interactions between the dietary polyunsaturated fatty acid ratio and genetic factors determine susceptibility to pediatric Crohn’s disease. Gastroenterology. 2014;146(4):929–31.

    Article  CAS  PubMed  Google Scholar 

  26. Laing B, Han DY, Ferguson LR. Candidate genes involved in beneficial or adverse responses to commonly eaten brassica vegetables in a New Zealand Crohn’s disease cohort. Nutrient. 2013;5(12):5046–64.

    Article  CAS  Google Scholar 

  27. Vind I et al. Increasing incidences of inflammatory bowel disease and decreasing surgery rates in Copenhagen City and County, 2003–2005: a population-based study from the Danish Crohn colitis database. Am J Gastroenterol. 2006;101(6):1274–82.

    Article  PubMed  Google Scholar 

  28. Benchimol EI et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58(11):1490–7.

    Article  CAS  PubMed  Google Scholar 

  29. Khalili H et al. Geographical variation and incidence of inflammatory bowel disease among US women. Gut. 2012;61(12):1686–92.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wang TT et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010;285(4):2227–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ooi JH et al. Vitamin D regulates the gut microbiome and protects mice from dextran sodium sulfate-induced colitis. J Nutr. 2013;143(10):1679–86.

    Article  CAS  PubMed  Google Scholar 

  32. Baumgart M et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1(5):403–18.

    Article  CAS  PubMed  Google Scholar 

  33. Barnich N et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117(6):1566–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Martinez-Medina M et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2014;63(1):116–24.

    Article  PubMed  Google Scholar 

  35. Leigh RJ, Turnberg LA. BCG vaccination and Crohn’s disease. Dig Dis Sci. 1980;25(12):972.

    Article  CAS  PubMed  Google Scholar 

  36. Gilat T et al. Childhood factors in ulcerative colitis and Crohn’s disease. An international cooperative study. Scand J Gastroenterol. 1987;22(8):1009–24.

    Article  CAS  PubMed  Google Scholar 

  37. Baron S et al. Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut. 2005;54(3):357–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hansen TS et al. Environmental factors in inflammatory bowel disease: a case-control study based on a Danish inception cohort. J Crohn’s Colitis. 2011;5(6):577–84.

    Article  Google Scholar 

  39. Virta L et al. Association of repeated exposure to antibiotics with the development of pediatric Crohn’s disease—a nationwide, register-based Finnish case–control study. Am J Epidemiol. 2012;175(8):775–84.

    Article  PubMed  Google Scholar 

  40. Marchant A et al. Newborns develop a Th1-type immune response to Mycobacterium bovis bacillus Calmette-Guerin vaccination. J Immunol. 1999;163(4):2249–55.

    CAS  PubMed  Google Scholar 

  41. Ennis FA et al. Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination. J Infect Dis. 2002;185(11):1657–9.

    Article  PubMed  Google Scholar 

  42. Villumsen M et al. Risk of inflammatory bowel disease following Bacille Calmette-Guerin and smallpox vaccination: a population-based Danish case-cohort study. Inflamm Bowel Dis. 2013;19(8):1717–24.

    PubMed  Google Scholar 

  43. Ng SC et al. Role of genetic and environmental factors in British twins with inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(4):725–36.

    Article  PubMed  Google Scholar 

  44. Van Kruiningen HJ, Freda BJ. A clustering of Crohn’s disease in Mankato, Minnesota. Inflamm Bowel Dis. 2001;7(1):27–33.

    Article  PubMed  Google Scholar 

  45. Pierce ES, Borowitz SM, Naser SA. The Broad Street pump revisited: dairy farms and an ongoing outbreak of inflammatory bowel disease in Forest, Virginia. Gut Pathog. 2011;3(1):20.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Pierce ES. Free-ranging Rocky Mountain bighorn sheep and an outbreak of inflammatory bowel disease along the Clark Fork River in Plains, Montana. Virulence. 2012;3(6):546–50.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Masclee GM et al. Is Clostridium difficile associated with relapse of inflammatory bowel disease? Results from a retrospective and prospective cohort study in the Netherlands. Inflamm Bowel Dis. 2013;19(10):2125–31.

    Article  PubMed  Google Scholar 

  48. Ananthakrishnan AN et al. Aspirin, nonsteroidal anti-inflammatory drug use, and risk for Crohn disease and ulcerative colitis: a cohort study. Ann Intern Med. 2012;156(5):350–9.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Musumba C, Pritchard DM, Pirmohamed M. Review article: cellular and molecular mechanisms of NSAID-induced peptic ulcers. Aliment Pharmacol Ther. 2009;30(6):517–31.

    Article  CAS  PubMed  Google Scholar 

  50. Jenkins AP et al. Do non-steroidal anti-inflammatory drugs increase colonic permeability? Gut. 1991;32(1):66–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Etminan M et al. Isotretinoin and risk for inflammatory bowel disease: a nested case-control study and meta-analysis of published and unpublished data. JAMA Dermatol. 2013;149(2):216–20.

    Article  PubMed  Google Scholar 

  52. Looijer-van Langen M et al. Estrogen receptor-beta signaling modulates epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2011;300(4):G621–6.

    Article  CAS  PubMed  Google Scholar 

  53. Khalili H et al. Hormone therapy increases risk of ulcerative colitis but not Crohn’s disease. Gastroenterology. 2012;143(5):1199–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Khalili H et al. Oral contraceptives, reproductive factors and risk of inflammatory bowel disease. Gut. 2013;62(8):1153–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Higuchi LM et al. A prospective study of cigarette smoking and the risk of inflammatory bowel disease in women. Am J Gastroenterol. 2012;107(9):1399–406.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Biedermann L et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Verschuere S et al. Cigarette smoke and the terminal ileum: increased autophagy in murine follicle-associated epithelium and Peyer’s patches. Histochem Cell Biol. 2012;137(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  58. He C et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Khalili H et al. Physical activity and risk of inflammatory bowel disease: prospective study from the Nurses’ Health Study cohorts. BMJ. 2013;347:f6633.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann N Y Acad Sci. 2010;1193:48–59.

    Article  CAS  PubMed  Google Scholar 

  61. Uthgenannt D et al. Effects of sleep on the production of cytokines in humans. Psychosom Med. 1995;57(2):97–104.

    Article  CAS  PubMed  Google Scholar 

  62. Swanson GR, Burgess HJ, Keshavarzian A. Sleep disturbances and inflammatory bowel disease: a potential trigger for disease flare? Expert Rev Clin Immunol. 2011;7(1):29–36.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Ranjbaran Z et al. The relevance of sleep abnormalities to chronic inflammatory conditions. Inflamm Res. 2007;56(2):51–7.

    Article  CAS  PubMed  Google Scholar 

  64. Opp MR. Cytokines and sleep. Sleep Med Rev. 2005;9(5):355–64.

    Article  PubMed  Google Scholar 

  65. Ananthakrishnan AN et al. Sleep disturbance and risk of active disease in patients with Crohn’s disease and ulcerative colitis. Clin Gastroenterol Hepatol. 2013;11(8):965–71.

    Article  PubMed  Google Scholar 

  66. Ali T et al. Assessment of the relationship between quality of sleep and disease activity in inflammatory bowel disease patients. Inflamm Bowel Dis. 2013;19(11):2440–3.

    Article  PubMed  Google Scholar 

  67. Mawdsley JE, Rampton DS. The role of psychological stress in inflammatory bowel disease. Neuroimmunomodulation. 2006;13(5–6):327–36.

    Article  CAS  PubMed  Google Scholar 

  68. Rampton DS. The influence of stress on the development and severity of immune-mediated diseases. J Rheumatol Suppl. 2011;88:43–7.

    Article  PubMed  Google Scholar 

  69. Ananthakrishnan AN et al. Association between depressive symptoms and incidence of Crohn’s disease and ulcerative colitis: results from the Nurses’ Health Study. Clin Gastroenterol Hepatol. 2013;11(1):57–62.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Langhorst J et al. Short-term stress, but not mucosal healing nor depression was predictive for the risk of relapse in patients with ulcerative colitis: a prospective 12-month follow-up study. Inflamm Bowel Dis. 2013;19(11):2380–6.

    Article  PubMed  Google Scholar 

  71. Vanuytsel T, et al Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut. 2014;63(8):1293–9.

  72. Martin Sanchez F, et al, Exposome informatics: considerations for the design of future biomedical research information systems. J Am Med Inform Assoc. 2014;21(3):386–90.

  73. Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet. 2005;6(11):805–14.

    Article  CAS  PubMed  Google Scholar 

  74. Gerber GK, Onderdonk AB, Bry L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput Biol. 2012;8(8):e1002624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Nes AA, et al Web-based, self-management enhancing interventions with e-diaries and personalized feedback for persons with chronic illness: a tale of three studies. Patient Educ Couns. 2013;93(3):451–8.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Aoibhliin O’Toole declares no conflict of interest. Joshua Korzenik has served as an IBD consultant for Abbvie, Empiramed, Pfizer, Vithera, Prometheus, and Janssen; he has received research/grant support from Abbvie, and Warner-Chilcott and has served as a member of the Data Safety Monitoring Board for Roche.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Korzenik.

Additional information

This article is part of the Topical Collection on Inflammatory Bowel Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Toole, A., Korzenik, J. Environmental Triggers for IBD. Curr Gastroenterol Rep 16, 396 (2014). https://doi.org/10.1007/s11894-014-0396-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-014-0396-y

Keywords

Navigation