Skip to main content

Advertisement

Log in

The Microbiome and Colorectal Neoplasia: Environmental Modifiers of Dysbiosis

  • Inflammatory Bowel Disease (R Bresalier, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The etiology of colon cancer is complex, yet it is undoubtedly impacted by intestinal microbiota. Whether the contribution to colon carcinogenesis is generated through the presence of an overall dysbiosis or by specific pathogens is still a matter for debate. However, it is apparent that interactions between microbiota and the host are mediated by a variety of processes, including signaling cascades, the immune system, host metabolism, and regulation of gene transcription. To fully appreciate the role of microbiota in colon carcinogenesis, it will be necessary to expand efforts to define populations in niche environments, such as colonic crypts, explore cross talk between the host and the microbiota, and more completely define the metabolomic profile of the microbiota. These efforts must be pursued with appreciation that dietary substrates and other environmental modifiers mediate changes in the microbiota, as well as their metabolism and functional characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61:212–36.

    Article  PubMed  Google Scholar 

  2. Smith BD, Smith GL, Hurria A, et al. Future of cancer incidence in the United States: burdens upon an aging, changing nation. J Clin Oncol. 2009;27:2758–65.

    Article  PubMed  Google Scholar 

  3. Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–36.

    Article  PubMed  CAS  Google Scholar 

  4. Man SM, Kaakoush NO, Mitchell HM. The role of bacteria and pattern-recognition receptor’s in Crohn’s disease. Nat Rev Gastroenterol Hepatol. 2011;8:152–68.

    Article  PubMed  Google Scholar 

  5. Candela M, Guidotti M, Fabbri A, et al. Human intestinal microbiota: cross talk with the host and its potential role in colorectal cancer. Crit Rev Micro. 2011;37:1–14.

    Article  CAS  Google Scholar 

  6. Hamer HM, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health? Amer J Physiol Gastrointest Liver Physiol. 2012;302:G1–9.

    Article  CAS  Google Scholar 

  7. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.

    PubMed  CAS  Google Scholar 

  8. Shen XJ, Rawls JF, Randall T, et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010;1:138–47.

    Article  PubMed  Google Scholar 

  9. Sobhani I, Tap J, Roudot-Thoraval F, et al. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One. 2011;6:e16393.

    Article  PubMed  CAS  Google Scholar 

  10. Ellmerich S, Schöller M, Duranton B, et al. Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis. 2000;21:753–6.

    Article  PubMed  CAS  Google Scholar 

  11. Duncan CG, Leary RJ, Lin J, et al. Identification of microbial DNA in human cancer. BMC Med Genomics. 2009;2:22. doi:10.1186/1755-8794-2-22.

    Article  PubMed  Google Scholar 

  12. Fukata M, Abreau MT. Microflora in colorectal cancer: a friend to fear. Nat Med. 2010;16:639–41.

    Article  PubMed  CAS  Google Scholar 

  13. Compare D, Nardone G. Contribution of gut microbiota to colonic and extracolonic cancer development. Dig Dis. 2011;29:554–61.

    Article  PubMed  Google Scholar 

  14. Vipperia K, O’Keefe SJ. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Practice. 2013;27:624–35.

    Article  Google Scholar 

  15. Gold JS, Bayar S, Salem RR. Association of Streptococcus bovis bacteremia with colonic neoplasia and extracolonic malignancy. Arch Surg. 2004;139:760–5.

    Article  PubMed  Google Scholar 

  16. Bibiloni R, Mangold M, Madsen KL, et al. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J Med Microbiol. 2006;55:1141–9.

    Article  PubMed  Google Scholar 

  17. •• Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nature Rev Microbiol. 2012;10:717–25. This paper proposes a new theory describing how low-abundance pathogens may be capable of causing inflammation.

    Article  CAS  Google Scholar 

  18. McDonald SA, Preston SI, Lovell MJ, et al. Mechanisms of disease: from stem cells to colorectal cancer. Nat Clin Pract Gastroenterol Hepatol. 2006;3:267–74.

    Article  PubMed  CAS  Google Scholar 

  19. Willis ND, Przyborski SA, Hutchinson CJ, Wilson RG. Colonic and colorectal cancer stem cells: progress in the search of putative biomarkers. J Anat. 2008;213:59–65.

    Article  PubMed  Google Scholar 

  20. •• Pédron T, Mulet C, Dauga C, et al. A crypt-specific core microbiota resides in the mouse colon. mBIO. 2012;3(3):e00116–12. This paper points out the critical need to characterize specific niche microbial populations if we are going to fully understand the contribution of microbiota to colon cancer. It will be necessary to perform this type of work if we are going to identify chemoprotective interventions.

    Article  PubMed  Google Scholar 

  21. Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol. 2005;71:7483–92.

    Article  PubMed  CAS  Google Scholar 

  22. Kosiewicz MM, Zirnheld AL, Alard P. Gut microbiota, immunity, and disease: A complex relationship. Front Microbiol. 2011;2:180. doi:10.3389/fmicb.2011.00180.

    Article  PubMed  Google Scholar 

  23. Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4607–14.

    Article  PubMed  CAS  Google Scholar 

  24. Smythies LD, Shen R, Bimczok D, et al. Inflammation anergy in human intestinal macrophages is due to Smad-induced IκBα expression and NF-κB inactivation. J Biol Chem. 2010;285:19593–604.

    Article  PubMed  CAS  Google Scholar 

  25. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.

    Article  PubMed  CAS  Google Scholar 

  26. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10:131–44.

    Article  PubMed  CAS  Google Scholar 

  27. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    Article  PubMed  CAS  Google Scholar 

  28. Brint EK, MacSharry J, Fanning A, et al. Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol. 2011;106:329–36.

    Article  PubMed  CAS  Google Scholar 

  29. Pimentel-Nunes P, Gonçalves N, Boal-Carvalho I, et al. Decreased toll-interacting protein and peroxisome proliferator-activated receptor γ are associated with increased expression of toll-like receptors in colon carcinogenesis. J Clin Pathol. 2012;65:302–8.

    Article  PubMed  CAS  Google Scholar 

  30. Lee J, Mo J-H, Katakura K, et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol. 2006;8:1327–36.

    Article  PubMed  CAS  Google Scholar 

  31. Chen GY, Shaw MH, Redondo G, Núñez G. The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res. 2008;68:10060–7.

    Article  PubMed  CAS  Google Scholar 

  32. Arthur JC, Jobin C. The struggle within: Microbial influences on colorectal cancer. Inflamm Bowel Dis. 2011;17:396–409.

    Article  PubMed  Google Scholar 

  33. Couturier-Maillard A, Secher T, Rehman A, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123:700–11.

    PubMed  CAS  Google Scholar 

  34. Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–5.

    Article  PubMed  CAS  Google Scholar 

  35. Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491:254–8.

    PubMed  CAS  Google Scholar 

  36. Wu S, Rhee K-J, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016–22.

    Article  PubMed  CAS  Google Scholar 

  37. Jobin C. Colorectal cancer: CRC – all about microbial products and barrier function? Nat Rev Gastroenterol Hepatol. 2012;9:694–6.

    Article  PubMed  CAS  Google Scholar 

  38. Tjalsma H, Boleij A, Marchesi JR, et al. A bacterial driver-passenger model for colorectal cancer: Beyond the usual suspects. Nat Rev Microbiol. 2012;10:575–82.

    Article  PubMed  CAS  Google Scholar 

  39. Wang L, Yi T, Zhang W, et al. IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res. 2010;70:10112–20.

    Article  PubMed  CAS  Google Scholar 

  40. Ji Y, Zhang W. Th17 cells: Positive or negative role in tumor? Cancer Immunol Immunother. 2010;59:979–87.

    Article  PubMed  Google Scholar 

  41. Murugaiyan G, Saha B. Protumor vs antitumor functions of IL-17. J Immunol. 2009;183:4169–75.

    Article  PubMed  CAS  Google Scholar 

  42. Yang S, Wang B, Guan C, et al. Foxp3 + IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leuk Biol. 2011;89:85–91.

    Article  CAS  Google Scholar 

  43. Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95:50–60.

    Article  PubMed  CAS  Google Scholar 

  44. De Preter V, Arjis I, Windey K, et al. Imparied butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Infl Bowel Dis. 2012;18:1127–36.

    Article  Google Scholar 

  45. O’Keefe SJD. Nutrition and colonic health: The critical role of microbiota. Curr Opin Gastroenterol. 2008;24:51–8.

    Article  PubMed  Google Scholar 

  46. Walton GE, van den Heuvel EGHM, Kosters MHW, et al. A randomized crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr. 2012;107:1466–75.

    Article  PubMed  CAS  Google Scholar 

  47. Modis K, Coletta C, Erdelyi K, et al. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 2013;27:601–11.

    Article  PubMed  CAS  Google Scholar 

  48. •• Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell. 2013;152:39–50. This paper demonstrates the importance of characterizing the functional changes in microbiota, in addition to determining microbial diversity when exposed to exogenous compounds.

    Article  PubMed  CAS  Google Scholar 

  49. • van Duynhoven J, Vaughan EE, Jacobs DM, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci. 2011;108:4531–8. This review provides an excellent overview of the multiple ways in which dietary polyphenols influence the dynamic relationship between microbiota and the host.

    Article  PubMed  Google Scholar 

  50. Cueva C, Sánchez–Patán F, Monagas M, et al. In vitro fermentation of grape seed flavan–3–ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiol Ecol. 2012;83:792–805.

    Article  PubMed  Google Scholar 

  51. Gall WE, Beebe K, Lawton KA, et al. α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One. 2010;5:e10883.

    Article  PubMed  Google Scholar 

  52. Zhao C, Ivanov I, Dougherty ER, et al. Non-invasive detection of candidate molecular biomarkers in subjects with a history of insulin resistance and colorectal adenomas. Cancer Prev Res. 2009;2:590–7.

    Article  CAS  Google Scholar 

  53. Yehuda-Shnaidman E, Schwartz B. Mechanisms linking obesity, inflammation and altered metabolism to colon carcinogenesis. Obesity Rev. 2012;13:1083–95.

    Article  CAS  Google Scholar 

  54. Calani L, Dall’Asta M, Derlindati E, et al. Colonic metabolism of polyphenols from coffee, green tea, and hazelnut skins. J Clin Gastroenterol. 2012;46 Suppl 1:S95–9.

    Article  PubMed  CAS  Google Scholar 

  55. Holmes E, Kinross J, Gibson GR, et al. Therapeutic modulation of microbiota-host metabolic interactions. Sci Trans Med. 2012;4:137rv6.

    Article  Google Scholar 

  56. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article  PubMed  CAS  Google Scholar 

  57. • Donohoe DR, Garge N, Zhang X, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26. This paper describes a well-controlled set of experiments that identify the role of butyrate in colonocyte homeostasis.

    Article  PubMed  CAS  Google Scholar 

  58. Dumas M-E. The microbial-mammalian metabolic axis: Beyond simple metabolism. Cell Metab. 2011;13:489–90.

    Article  PubMed  CAS  Google Scholar 

  59. Cho Y, Kim H, Turner ND, et al. A chemoprotective fish oil- and pectin-containing diet temporally alters gene expression profiles in exfoliated rat colonocytes throughout oncogenesis. J Nutr. 2011;141:1029–35.

    Article  PubMed  CAS  Google Scholar 

  60. Crim KC, Sanders LM, Hong MY, et al. Upregulation of p21Waf1/Cip1 expression in vivo by butyrate administration can be chemoprotective or chemopromotive depending on the lipid component of the diet. Carcinogenesis. 2008;29:1415–20.

    Article  PubMed  CAS  Google Scholar 

  61. Barrasa JI, Santiago-Gómez A, Olmo N, et al. Resistance to butyrate impairs bile acid-induced apoptosis in human colon adenocarcinoma cells via up-regulation of Bcl-2 and inactivation of Bax. Biochim Biophys Acta. 2012;1823:2201–9.

    Google Scholar 

  62. Turk HF, Kolar SS, Fan YY, et al. Linoleic acid and butyrate synergize to increase Bcl-2 levels in colonocytes. Int J Cancer. 2011;128:63–71.

    Article  PubMed  CAS  Google Scholar 

  63. Cherbuy C, Honvo-Houeto E, Bruneau A, et al. Microbiota matures colonic epithelium through a coordinated induction of cell cycle-related proteins in gnotobiotic rat. Am J Physiol Gastrointest Liver Physiol. 2010;299:G348–57.

    Article  PubMed  CAS  Google Scholar 

  64. Cho Y, Turner ND, Davidson LA, et al. A chemoprotective fish oil/pectin diet enhances apoptosis via Bcl-2 promoter methylation in rat azoxymethane-induced carcinomas. Exp Biol Med. 2012;237:1387–93.

    Article  CAS  Google Scholar 

  65. Davidson LA, Nguyen DV, Hokanson RM, et al. Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Res. 2004;64:6797–804.

    Article  PubMed  CAS  Google Scholar 

  66. Davidson LA, Wang N, Ivanov I, et al. Identification of actively translated mRNA transcripts in a rat model of early-stage colon carcinogenesis. Cancer Prev Res. 2009;2:984–94.

    Article  CAS  Google Scholar 

  67. Wilson AJ, Chueh AC, Tögel L, et al. Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res. 2010;70:609–20.

    Article  PubMed  CAS  Google Scholar 

  68. Rajendran P, Williams DE, Ho E, Dashwood RH. Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol. 2011;46:181–99.

    Article  PubMed  CAS  Google Scholar 

  69. Wu S, Li RW, Li W, Li C. Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells. PLoS One. 2012;7:e36940.

    Article  PubMed  CAS  Google Scholar 

  70. Wilson AJ, Byun DS, Nasser S, et al. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell. 2008;19:4062–75.

    Article  PubMed  CAS  Google Scholar 

  71. Li Y, Kundu P, Seow SW, et al. Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis. 2012;33:1231–8.

    Article  PubMed  CAS  Google Scholar 

  72. Arthur JC, Perez-Chanona E, Mühlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3.

    Article  PubMed  CAS  Google Scholar 

  73. Chen H-M, Yu Y-N, Wang J-L, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013;97:1044–52.

    Article  PubMed  CAS  Google Scholar 

  74. Conlon MA, Kerr CA, McSweeney CS, et al. Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J Nutr. 2012;142:832–40.

    Article  PubMed  CAS  Google Scholar 

  75. Hooda S, Boler BMV, Serao MCR, et al. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr. 2012;142:1259–65.

    Article  PubMed  CAS  Google Scholar 

  76. Kuo S-M. The interplay between fiber and the intestinal microbiota in the inflammatory response. Adv Nutr. 2013;4:16–28.

    Article  PubMed  CAS  Google Scholar 

  77. Ghosh S, DeCoffe D, Brown K, et al. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS One. 2013;8(2):e55468.

    Article  PubMed  CAS  Google Scholar 

  78. Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaeonic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008;153:14–23.

    Article  PubMed  CAS  Google Scholar 

  79. Kolar SS, Barhoumi R, Callaway E, et al. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca2+ accumulation in human colon cancer cells and primary cultures of rat colonic crypts. Am J Physiol Gastrointest Liver Physiol. 2007;293:G935–43.

    Article  PubMed  CAS  Google Scholar 

  80. Kolar SS, Barhoumi R, Jones CK, et al. Interactive effects of fatty acid and butyrate-induced mitochondrial Ca2+ loading and apoptosis in colonocytes. Cancer. 2011;117:5294–303.

    Article  PubMed  CAS  Google Scholar 

  81. Simoes CD, Maukonen J, Kaprio J, et al. Habitual dietary intake is associated with stool microbiota composition in monozygotic twins. J Nutr. 2013;143:417–23.

    Article  PubMed  CAS  Google Scholar 

  82. Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: A putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol. 2011;301:G401–24.

    Article  PubMed  Google Scholar 

  83. Zhu Y, Luo TM, Jobin C, Young HA. Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett. 2011;309:119–27.

    Article  PubMed  CAS  Google Scholar 

  84. Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. J Leukoc Biol. 2011;89:685–95.

    Article  PubMed  CAS  Google Scholar 

  85. Appleyard CB, Cruz ML, Isidro AA, et al. Pretreatemnt with the probiotic VSL#3 delays transition from inflammation to dysplasia in a rat model of colitis-associated cancer. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1004–13.

    Article  PubMed  CAS  Google Scholar 

  86. Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–6.

    Article  PubMed  CAS  Google Scholar 

  87. McLaughlin MM, Dacquisto MP, Jacobus DP, Horowitz RE. Effects of the germfree state on responses of mice to whole-body irradiation. Rad Res. 1964;23:333–49.

    Article  CAS  Google Scholar 

  88. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Nat Acad Sci USA. 2005;102:13254–9.

    Article  PubMed  CAS  Google Scholar 

  89. Manichanh C, Varela E, Martinez C, et al. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am J Gastroenterol. 2008;103:1754–61.

    Article  PubMed  CAS  Google Scholar 

  90. Egan LJ, Eckmann L, Greten FR, et al. IκB-kinaseβ-dependent NF-κB activation provides radioprotection to the intestinal epithelium. Proc Nat Acad Sci USA. 2004;101:2452–7.

    Article  PubMed  CAS  Google Scholar 

  91. Palmer C, Bik EM, DiGiulio DB, et al. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177.

    Article  PubMed  Google Scholar 

  92. Donovan SM, Wang M, Li M, et al. Host-microbe interactions in the neonatal intestine: Role of human milk oligosaccharides. Adv Nutr. 2012;3:4505–55.

    Article  Google Scholar 

  93. Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18 Suppl 4:12–5.

    Article  PubMed  CAS  Google Scholar 

  94. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4653–8.

    Article  PubMed  CAS  Google Scholar 

  95. • Schwartz S, Friedberg I, Ivanov IV, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13:r32. doi:10.1186/gb-2012-13-4-r32. This paper describes the interplay between colonizing microbiota and gene expression in the developing neonatal intestinal tract.

    Article  PubMed  CAS  Google Scholar 

  96. Payne AN, Chassard C, Banz Y, Lacroix C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol Ecol. 2012;80:608–23.

    Article  PubMed  CAS  Google Scholar 

  97. Young W, Roy NC, Lee J, et al. Changes in bowel microbiota induced by feeding weanlings resistant starch stimulate transcriptomic and physiological responses. Appl Environ Microbiol. 2012;78:6656–64.

    Article  PubMed  CAS  Google Scholar 

  98. Fança-Berthon P, Hoebler C, Mouzet E, et al. Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J Ped Gastro Nutr. 2010;51:402–13.

    Article  Google Scholar 

  99. Joss-Moore LA, Lane RH. The developmental origins of adult disease. Curr Opin Ped. 2009;21:230–4.

    Article  Google Scholar 

  100. Ahlquist DA, Zou H, Domanico M, et al. Next-generation stool DNA accurately detects colorectal cancer and large adenomas. Gastroenterol. 2012;142:248–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Supported in part by USCP (HVM006-12 and R0002-11) and CDPB (PN 12-20) to N.D.T. and NIH U01CA162077 to R.S.C.

Compliance with Ethics Guidelines

Conflict of Interest

Nancy D. Turner, Lauren E. Ritchie, Robert S. Bresalier, and Robert S. Chapkin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. D. Turner or R. S. Chapkin.

Additional information

This article is part of the Topical Collection on Inflammatory Bowel Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, N.D., Ritchie, L.E., Bresalier, R.S. et al. The Microbiome and Colorectal Neoplasia: Environmental Modifiers of Dysbiosis. Curr Gastroenterol Rep 15, 346 (2013). https://doi.org/10.1007/s11894-013-0346-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11894-013-0346-0

Keywords

Navigation