Skip to main content

Advertisement

Log in

The Chronic Gastrointestinal Consequences Associated With Campylobacter

  • Large Intestine (B Cash, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Campylobacteriosis is a leading cause of acute infectious diarrhea in the developing world, where it causes considerable mortality, and in developed countries, where it accounts for significant healthcare and other costs. Evidence has emerged from basic science, clinical, and epidemiological domains that suggests that Campylobacter infection is not limited to acute illness but is also involved in the development of well-described extraintestinal sequelae, such as the Guillain–Barré syndrome and reactive arthritis, and may also contribute to the pathogenesis of chronic gastrointestinal conditions. This review will focus on the role of Campylobacter infection as a risk factor for the development of chronic gastrointestinal sequelae, such as functional gastrointestinal disorders, with which irritable bowel syndrome has been most frequently associated, inflammatory bowel disease, and celiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Samuel MC, Vugia DJ, Shallow S, Marcus R, Segler S, McGivern T, et al. Epidemiology of sporadic Campylobacter infection in the United States and declining trend in incidence. FoodNet 1996-1999. Clin Infect Dis. 2004;38 Suppl 3:S165–74.

    Article  PubMed  Google Scholar 

  2. Wheeler JG, Sethi D, Cowden JM, Wall PG, Rodrigues LC, Tompkins DS, et al. Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance. The Infectious Intestinal Disease Study Executive. BMJ. 1999;318(7190):1046–50.

    Article  PubMed  CAS  Google Scholar 

  3. • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011;17(1):7–15. This study is methodologically advanced and describes the most recent estimates for foodborne illness in the United States.

    PubMed  Google Scholar 

  4. Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human campylobacteriosis in developing countries. Emerg Infect Dis. 2002;8(3):237–44.

    Article  PubMed  Google Scholar 

  5. Neimann J, Engberg J, Molbak K, Wegener HC. A case-control study of risk factors for sporadic Campylobacter infections in Denmark. Epidemiol Infect. 2003;130(3):353–66.

    PubMed  CAS  Google Scholar 

  6. Danis K, Di Renzi M, O'Neill W, Smyth B, McKeown P, Foley B, et al. Risk factors for sporadic Campylobacter infection: an all-Ireland case-control study. Euro Surveill. 2009 Feb 19;14(7).

  7. Friedman CR, Hoekstra RM, Samuel M, Marcus R, Bender J, Shiferaw B, et al. Risk factors for sporadic Campylobacter infection in the United States: a case-control study in FoodNet sites. Clin Infect Dis. 2004;38 Suppl 3:S285–96.

    Article  PubMed  Google Scholar 

  8. Gallay A, Bousquet V, Siret V, Prouzet-Mauleon V, Valk H, Vaillant V, et al. Risk factors for acquiring sporadic Campylobacter infection in France: results from a national case-control study. J Infect Dis. 2008;197(10):1477–84.

    Article  PubMed  Google Scholar 

  9. Unicomb LE, Dalton CB, Gilbert GL, Becker NG, Patel MS. Age-specific risk factors for sporadic Campylobacter infection in regional Australia. Foodborne Pathog Dis. 2008;5(1):79–85.

    Article  PubMed  Google Scholar 

  10. Waterborne outbreak of gastroenteritis associated with a contaminated municipal water supply, Walkerton, Ontario, May-June 2000. Can Commun Dis Rep. 2001 Oct 15;26(20):170-3

  11. Jakopanec I, Borgen K, Vold L, Lund H, Forseth T, Hannula R, et al. A large waterborne outbreak of campylobacteriosis in Norway: the need to focus on distribution system safety. BMC Infect Dis. 2008;8:128.

    Article  PubMed  Google Scholar 

  12. Heuvelink AE, van Heerwaarden C, Zwartkruis-Nahuis A, Tilburg JJ, Bos MH, Heilmann FG, et al. Two outbreaks of campylobacteriosis associated with the consumption of raw cows' milk. Int J Food Microbiol. 2009;134(1–2):70–4.

    Article  PubMed  CAS  Google Scholar 

  13. Beaudeau P, de Valk H, Vaillant V, Mannschott C, Tillier C, Mouly D, et al. Lessons learned from ten investigations of waterborne gastroenteritis outbreaks, France, 1998-2006. J Water Health. 2008;6(4):491–503.

    Article  PubMed  Google Scholar 

  14. Dale K, Kirk M, Sinclair M, Hall R, Leder K. Reported waterborne outbreaks of gastrointestinal disease in Australia are predominantly associated with recreational exposure. Aust N Z J Public Health. 2010;34(5):527–30.

    Article  PubMed  Google Scholar 

  15. Newell DG, Fearnley C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 2003;69(8):4343–51.

    Article  PubMed  CAS  Google Scholar 

  16. Ailes E, Demma L, Hurd S, Hatch J, Jones TF, Vugia D, et al. Continued decline in the incidence of Campylobacter infections, FoodNet 1996-2006. Foodborne Pathog Dis. 2008;5(3):329–37.

    Article  PubMed  Google Scholar 

  17. Thompson JS, Cahoon FE, Hodge DS. Rate of Campylobacter spp. isolation in three regions of Ontario, Canada, from 1978 to 1985. J Clin Microbiol. 1986;24(5):876–8.

    PubMed  CAS  Google Scholar 

  18. Nelson W, Harris B. Campylobacteriosis rates show age-related static bimodal and seasonality trends. N Z Med J. 2011;124(1337):33–9.

    PubMed  Google Scholar 

  19. Blaser MJ, Berkowitz ID, LaForce FM, Cravens J, Reller LB, Wang WL. Campylobacter enteritis: clinical and epidemiologic features. Ann Intern Med. 1979;91(2):179–85.

    PubMed  CAS  Google Scholar 

  20. Nemelka KW, Brown AW, Wallace SM, Jones E, Asher LV, Pattarini D, et al. Immune response to and histopathology of Campylobacter jejuni infection in ferrets (Mustela putorius furo). Comp Med. 2009;59(4):363–71.

    PubMed  CAS  Google Scholar 

  21. Law BF, Adriance SM, Joens LA. Comparison of in vitro virulence factors of Campylobacter jejuni to in vivo lesion production. Foodborne Pathog Dis. 2009;6(3):377–85.

    Article  PubMed  CAS  Google Scholar 

  22. Lippert E, Karrasch T, Sun X, Allard B, Herfarth HH, Threadgill D, et al. Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following Campylobacter jejuni infection. PLoS One. 2009;4(10):e7413.

    Article  PubMed  Google Scholar 

  23. Wallis MR. The pathogenesis of Campylobacter jejuni. Br J Biomed Sci. 1994;51(1):57–64.

    PubMed  CAS  Google Scholar 

  24. Mortensen NP, Schiellerup P, Boisen N, Klein BM, Locht H, Abuoun M, et al. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome. APMIS. 2011;119(9):626–34.

    Article  PubMed  CAS  Google Scholar 

  25. Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans R Soc Trop Med Hyg. 2008;102(2):123–9.

    Article  PubMed  CAS  Google Scholar 

  26. Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int J Med Microbiol. 2010;300(4):205–11.

    Article  PubMed  CAS  Google Scholar 

  27. Sun X, Threadgill D, Jobin C. Campylobacter jejuni induces colitis through activation of mammalian target of rapamycin signaling. Gastroenterology. 2012;142(1):86–95 e5.

    Article  PubMed  CAS  Google Scholar 

  28. • Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog. 2010;2(14):doi:10.1186/757-4749-2-14. This is an elegantly designed study which demonstrates the mechanisms by which C. jejuni may induce trafficking of commensal microbiota and initiate immune dysfunction associated with chronic gastrointestinal sequelae.

  29. Spiller RC, Jenkins D, Thornley JP, Hebden JM, Wright T, Skinner M, et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut. 2000;47(6):804–11.

    Article  PubMed  CAS  Google Scholar 

  30. Kalischuk LD, Buret AG. A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am J Physiol Gastrointest Liver Physiol. 2010;298(1):G1–9.

    Article  PubMed  CAS  Google Scholar 

  31. Halvorson HA, Schlett CD, Riddle MS. Postinfectious irritable bowel syndrome–a meta-analysis. Am J Gastroenterol. 2006;101(8):1894–9.

    Article  PubMed  Google Scholar 

  32. Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26(4):535–44.

    Article  PubMed  CAS  Google Scholar 

  33. Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology. 2009;136(6):1979–88.

    Article  PubMed  Google Scholar 

  34. • Marshall JK, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM. Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut. 2010;59(5):605–11. An important follow-up study to the initial description of the risk of irritable bowel syndrome following a waterborne outbreak of Campylobacter and STEC. This follow-up study demonstrates persistent changes in bowel habits providing important documentation on the chronicity of PI-IBS.

    Article  PubMed  Google Scholar 

  35. Thornley JP, Jenkins D, Neal K, Wright T, Brough J, Spiller RC. Relationship of Campylobacter toxigenicity in vitro to the development of postinfectious irritable bowel syndrome. J Infect Dis. 2001;184(5):606–9.

    Article  PubMed  CAS  Google Scholar 

  36. Dunlop SP, Jenkins D, Neal KR, Spiller RC. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology. 2003;125(6):1651–9.

    Article  PubMed  Google Scholar 

  37. Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SM. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006;131(2):445–50.

    Article  PubMed  Google Scholar 

  38. Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol. 2003;98(7):1578–83.

    Article  PubMed  Google Scholar 

  39. van der Veek PP, van den Berg M, de Kroon YE, Verspaget HW, Masclee AA. Role of tumor necrosis factor-alpha and interleukin-10 gene polymorphisms in irritable bowel syndrome. Am J Gastroenterol. 2005;100(11):2510–6.

    Article  PubMed  Google Scholar 

  40. Gwee KA, Collins SM, Read NW, Rajnakova A, Deng Y, Graham JC, et al. Increased rectal mucosal expression of interleukin 1beta in recently acquired post-infectious irritable bowel syndrome. Gut. 2003;52(4):523–6.

    Article  PubMed  CAS  Google Scholar 

  41. Valentini L, Eggers J, Ockenga J, Haas VK, Buhner S, Winklhofer-Roob BM, et al. Association between intestinal tight junction permeability and whole-body electrical resistance in healthy individuals: a hypothesis. Nutrition. 2009;25(6):706–14.

    Article  PubMed  CAS  Google Scholar 

  42. • Villani AC, Lemire M, Thabane M, Belisle A, Geneau G, Garg AX, et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology. 2010;138(4):1502–13. This is the first descriptive study evaluating potential genetic determinants of PI-IBS and found that genes that encode proteins involved in epithelial cell barrier function and the innate immune response to enteric bacteria are associated with the development of IBS following acute gastroenteritis.

    Article  PubMed  CAS  Google Scholar 

  43. Pimentel M, Chatterjee S, Chang C, Low K, Song Y, Liu C, et al. A new rat model links two contemporary theories in irritable bowel syndrome. Dig Dis Sci. 2008;53(4):982–9.

    Article  PubMed  Google Scholar 

  44. • Jee SR, Morales W, Low K, Chang C, Zhu A, Pokkunuri V, et al. ICC density predicts bacterial overgrowth in a rat model of post-infectious IBS. World J Gastroenterol. 2010;16(29):3680–6. This study expands on the only currently available model that has been developed to evaluation the association between campylobacter infection and the triggering of chronic gastrointestinal conditions such as small intestinal bacterial overgrowth and irritable bowel syndrome.

    Article  PubMed  Google Scholar 

  45. Mearin F, Perez-Oliveras M, Perello A, Vinyet J, Ibanez A, Coderch J, et al. Dyspepsia and irritable bowel syndrome after a Salmonella gastroenteritis outbreak: one-year follow-up cohort study. Gastroenterology. 2005;129(1):98–104.

    Article  PubMed  Google Scholar 

  46. Porter CK, Gormley R, Tribble DR, Cash BD, Riddle MS. The incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy U.S. adult population. Am J Gastroenterol. 2011;106(1):130–8.

    Article  PubMed  Google Scholar 

  47. Parry SD, Stansfield R, Jelley D, Gregory W, Phillips E, Barton JR, et al. Is irritable bowel syndrome more common in patients presenting with bacterial gastroenteritis? A community-based, case-control study. Am J Gastroenterol. 2003;98(2):327–31.

    Article  PubMed  Google Scholar 

  48. Ford AC, Thabane M, Collins SM, Moayyedi P, Garg AX, Clark WF, et al. Prevalence of uninvestigated dyspepsia 8 years after a large waterborne outbreak of bacterial dysentery: a cohort study. Gastroenterology. 2010;138(5):1727–36.

    Article  PubMed  Google Scholar 

  49. Saps M, Pensabene L, Di Martino L, Staiano A, Wechsler J, Zheng X, et al. Post-infectious functional gastrointestinal disorders in children. J Pediatr. 2008;152(6):812–6.

    Article  PubMed  Google Scholar 

  50. Porter CK, Choi D, Cash BD, Pimentel M, Murray JA, Riddle MS. Pathogen-specific risk of functional gastrointestinal disorders, gastroesophageal reflux disease and celiac disease following acute enteric infection, 76th Annual American College of Gastroenterology Meeting (Poster 337). Washington, DC2011.

  51. Kindt S, Tertychnyy A, de Hertogh G, Geboes K, Tack J. Intestinal immune activation in presumed post-infectious functional dyspepsia. Neurogastroenterol Motil. 2009;21(8):832-e56.

    Article  PubMed  Google Scholar 

  52. • Futagami S, Shimpuku M, Yin Y, Shindo T, Kodaka Y, Nagoya H, et al. Pathophysiology of functional dyspepsia. J Nihon Med Sch. 2011;78(5):280–5. An excellent review on functional dyspepsia, with a good review of the evidence surrounding post-infectious functional dyspepsia.

    Article  PubMed  CAS  Google Scholar 

  53. Tack J, Demedts I, Dehondt G. Clinical and pathophysiological characteristics of acute-onset functional dyspepsia. Gastroenterology. 2001;122:1738–47.

    Article  Google Scholar 

  54. Futagami S, Shindo T, Kawagoe T, Horie A, Shimpuku M, Gudis K, et al. Migration of eosinophils and CCR2-/CD68-double positive cells into the duodenal mucosa of patients with postinfectious functional dyspepsia. Am J Gastroenterol. 2010;105(8):1835–42.

    Article  PubMed  Google Scholar 

  55. Beltinger J, del Buono J, Skelly MM, Thornley J, Spiller RC, Stack WA, et al. Disruption of colonic barrier function and induction of mediator release by strains of Campylobacter jejuni that invade epithelial cells. World J Gastroenterol. 2008;14(48):7345–52.

    Article  PubMed  CAS  Google Scholar 

  56. Schumacher G. First attack of inflammatory bowel disease and infectious colitis. A clinical, histological and microbiological study with special reference to early diagnosis. Scand J Gastroenterol Suppl. 1993;198:1–24.

    PubMed  CAS  Google Scholar 

  57. Navarro-Llavat M, Domenech E, Bernal I, Sanchez-Delgado J, Manterola JM, Garcia-Planella E, et al. Prospective, observational, cross-sectional study of intestinal infections among acutely active inflammatory bowel disease patients. Digestion. 2009;80(1):25–9.

    Article  PubMed  Google Scholar 

  58. Ternhag A, Torner A, Svensson A, Ekdahl K, Giesecke J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis. 2008;14(1):143–8.

    Article  PubMed  Google Scholar 

  59. Gradel KO, Nielsen HL, Schonheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology. 2009;137(2):495–501.

    Article  PubMed  Google Scholar 

  60. Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130(6):1588–94.

    Article  PubMed  Google Scholar 

  61. Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135(3):781–6.

    Article  PubMed  Google Scholar 

  62. Lake RJ, Cressey PJ, Campbell DM, Oakley E. Risk ranking for foodborne microbial hazards in New Zealand: burden of disease estimates. Risk Anal. 2010;30(5):743–52.

    Article  PubMed  Google Scholar 

  63. Riddle MS, Porter CK. Detection bias and the association between inflammatory bowel disease and Salmonella and Campylobacter infection. Gut. 2012;61(4):635.

    Article  PubMed  Google Scholar 

  64. Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577–94.

    Article  PubMed  CAS  Google Scholar 

  65. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, et al. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012;61(1):69–77.

    Article  PubMed  Google Scholar 

  66. Verdu EF, Huang X, Natividad J, Lu J, Blennerhassett PA, David CS, et al. Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G217–25.

    Article  PubMed  CAS  Google Scholar 

  67. • Bashashati M, Rezaei N, Andrews CN, Chen CQ, Daryani NE, Sharkey KA, et al. Cytokines and irritable bowel syndrome: where do we stand? Cytokine. 2012;57(2):201–9. An excellent and comprehensive review of the recent literature on cytokine profiles, cytokine gene polymorphisms in patients with IBS, and the role of cytokines in animal models of IBS.

    Article  PubMed  CAS  Google Scholar 

  68. Torres J, Perez-Perez G, Goodman KJ, Atherton JC, Gold BD, Harris PR, et al. A comprehensive review of the natural history of Helicobacter pylori infection in children. Arch Med Res. 2000;31(5):431–69.

    Article  PubMed  CAS  Google Scholar 

  69. Kalischuk LD, Buret AG. A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am J Physiol Gastrointest Liver Physiol. 2009 Oct 29.

  70. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol. 2006;290:G577–82.

    Article  PubMed  CAS  Google Scholar 

  71. Kalischuk LD, Inglis GD, Buret AG. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog. 2009;1(1):2.

    Article  PubMed  Google Scholar 

  72. Green PH, Cellier C. Celiac disease. N Engl J Med. 2007;357:1731–43.

    Article  PubMed  CAS  Google Scholar 

  73. Green P, Jabri B. Coeliac disease. Lancet. 2003;362(383-91).

  74. Landzberg BR, Connor BA. Persistent diarrhea in the returning traveler: think beyond persistent infection. Scand J Gastroenterol. 2005;40(1):112–4.

    Article  PubMed  Google Scholar 

  75. Mendelson RM, Wright SG, Tomkins AM. Coeliac disease presenting as malabsorption from the tropics. Gut. 1978;19:992.

    Google Scholar 

  76. Verdu EF, Mauro M, Bourgeois J, Armstrong D. Clinical onset of celiac disease after an episode of Campylobacter jejuni enteritis. Can J Gastroenterol. 2007;21(7):453–5.

    PubMed  CAS  Google Scholar 

  77. Riddle MS, Murray JA, Porter CK. The incidence and risk of celiac disease in a healthy US adult population. Am J Gastroenterol. 2012 May; doi:10.1038/ajg.2012.130

  78. van Sommeren S, Visschedijk MC, Festen EA, de Jong DJ, Ponsioen CY, Wijmenga C, et al. HNF4alpha and CDH1 are associated with ulcerative colitis in a Dutch cohort. Inflamm Bowel Dis. 2011;17(8):1714–8.

    Article  PubMed  Google Scholar 

  79. Troncone R, Bhatnagar S, Butzner D, Cameron D, Hill I, Hoffenberg E, European Society for Paediatric Gastroenterology, Hepatology and Nutrition. Coeliac disease and other immunologically mediated disorders of the gastrointestinal tract: Working Group report of the second World Congress of Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr. 2004;39 Suppl 2:S601–10.

    Article  PubMed  Google Scholar 

  80. • Batz MB, Hoffman S, Morris JG. Ranking the risks: the 10 pathogen-food combinations with the greatest burden on public health. University of Florida, Emerging Pathogens Institute. 2011. While not a peer-reviewed research paper, this is very accessible and thorough publication which expands upon the Scallan et al (2011) CDC estimates of food borne illness. It uses thoroughly described methods to estimate health impacts in monetary cost of illness and loss of Quality Adjusted Life Years (QALY s) for the major foodborne illness pathogens.

  81. Tosh PK, McDonald LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clin Infect Dis. 2012;54(5):707–13.

    Article  PubMed  CAS  Google Scholar 

  82. FAO/WHO [Food and Agriculture Organization of the United Nations/World Health Organization]. 2009. Risk assessment of Campylobacter spp. in broiler chickens: Interpretative Summary. Microbiological Risk Assessment Series No 11. Geneva, pp. 35.

  83. Jess T, Simonsen J, Nielsen NM, Jorgensen KT, Bager P, Ethelberg S, et al. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut. 2011;60(3):318–24.

    Article  PubMed  Google Scholar 

  84. Parry SD, Stansfield R, Jelley D, Gregory W, Phillips E, Barton JR, et al. Does bacterial gastroenteritis predispose people to functional gastrointestinal disorders? A prospective, community-based, case-control study. Am J Gastroenterol. 2003;98(9):1970–5.

    PubMed  Google Scholar 

  85. Thabane M, Simunovic M, Akhtar-Danesh N, Garg AX, Clark WF, Collins SM, et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010;105(4):933–9.

    Article  PubMed  Google Scholar 

  86. Moss-Morris R, Spence M. To “lump” or to “split” the functional somatic syndromes: can infectious and emotional risk factors differentiate between the onset of chronic fatigue syndrome and irritable bowel syndrome? Psychosom Med. 2006;68:463–9.

    Article  PubMed  Google Scholar 

  87. Gwee KA, Leong YL, Graham C. The role of psychological and biological factors in postinfective gut dysfunction. Gut. 1999;44:400–6.

    Article  PubMed  CAS  Google Scholar 

  88. Locke 3rd GR, Yawn BP, Wollan PC, Melton 3rd LJ, Lydick E, Talley NJ. Incidence of a clinical diagnosis of the irritable bowel syndrome in a United States population. Aliment Pharmacol Ther. 2004;19(9):1025–31.

    Article  PubMed  Google Scholar 

  89. Ladabaum U. Safety, efficacy and costs of pharmacotherapy for functional gastrointestinal disorders: the case of alosetron and its implications. Aliment Pharmacol Ther. 2003;17(8):1021–30.

    Article  PubMed  CAS  Google Scholar 

  90. Thabane M, Simunovic M, Akhtar-Danesh N, Garg AX, Clark WF, Collins SM, et al. An outbreak of acute bacterial gastroenteritis is associated with an increased incidence of irritable bowel syndrome in children. Am J Gastroenterol. 2010;105(4):933–9.

    Article  PubMed  Google Scholar 

  91. Bernstein CN, Blanchard JF, Rawsthorne P, Collins MT. Population-based case control study of seroprevalence of Mycobacterium paratuberculosis in patients with Crohn's disease and ulcerative colitis. J Clin Microbiol. 2004;42(3):1129–35.

    Article  PubMed  Google Scholar 

  92. Loftus Jr EV, Johnson SJ, Wang ST, Wu E, Mulani PM, Chao J. Risk-benefit analysis of adalimumab versus traditional non-biologic therapies for patients with Crohn's disease. Inflamm Bowel Dis. 2011;17(1):127–40.

    Article  PubMed  Google Scholar 

  93. Prenzler A, Yen L, Mittendorf T, von der Schulenburg JM. Cost effectiveness of ulcerative colitis treatment in Germany: a comparison of two oral formulations of mesalazine. BMC Health Serv Res. 2011;11:157.

    Article  PubMed  Google Scholar 

  94. Clark W, Raferty J, Song F, Barton P, Cummings C, Fry-Smith A. Systematic review and economic evaluation of the effectiveness of infliximab for the treatment of Crohn’s disease. Health Technol Assess. 2003;7(3).

  95. Marshall J, Blackhouse G, Goeree R, Brazier N, Irvine E, Faulkner L. Infliximab for the treatment of Crohn’s disease: a systematic review and cost–utility analysis. Technology report No 24. Ottawa: Canadian Coordinating Office for Health Technology Assessment. 2002.

  96. Arseneau KO, Cohn SM, Cominelli F, Connors AFJ. Cost-utility of initial medical management for Crohn’s disease perianal fistulae. Gastroenterology. 2001;120:1640–56.

    Article  PubMed  CAS  Google Scholar 

  97. Mein SM, Ladabaum U. Serological testing for coeliac disease in patients with symptoms of irritable bowel syndrome: a cost-effectiveness analysis. Aliment Pharmacol Ther. 2004;19(11):1199–210.

    Article  PubMed  CAS  Google Scholar 

  98. Norstrom F, Lindholm L, Sandstrom O, Nordyke K, Ivarsson A. Delay to celiac disease diagnosis and its implications for health-related quality of life. BMC Gastroenterol. 2011;11:118.

    Article  PubMed  Google Scholar 

  99. Wallander MA, Johansson S, Ruigomez A, GarciaRodriguez LA, Jones R. Dyspepsia in general practice: incidence, risk factors, comorbidity and mortality. Fam Pract. 2007;24(5):403–11.

    Article  PubMed  Google Scholar 

  100. Groeneveld PW, Lieu TA, Fendrick AM. Quality of life measurement clarifies the cost-effectiveness of Helicobacter pylori eradication in peptic ulcer disease and uninvestigated dyspepsia. Am J Gastroenterol. 2001;96:338–47.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The opinions and assertions herein should not be construed as official or representing the views of the Department of the Navy, the Department of Defense, or the U.S. Government. This is a U.S. Government work. There are no restrictions on its use. There were no financial conflicts of interests among any of the authors. E.F.V. is supported by grants from CCFC and CAG/CIHR.

Three of the authors (M.R., R.G., C.P.) are employees of the U.S. Government or military service members. This work was prepared as part of official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Riddle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, M.S., Gutierrez, R.L., Verdu, E.F. et al. The Chronic Gastrointestinal Consequences Associated With Campylobacter. Curr Gastroenterol Rep 14, 395–405 (2012). https://doi.org/10.1007/s11894-012-0278-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-012-0278-0

Keywords

Navigation