Skip to main content

Advertisement

Log in

Appropriate Protein and Specific Amino Acid Delivery Can Improve Patient Outcome: Fact or Fantasy?

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Protein utilization and requirements in critical illness are much researched and debated topics. The enhanced turnover and catabolism of protein in the setting of critical illness is well described and multifactorial in nature. The need to preserve lean body mass and enhance nitrogen retention in this state to improve immunologic function and reduce morbidity is well described. Debates as to the optimum amount of protein to provide in such states still exist, and a significant amount of research has contributed to our understanding of not only how much protein to supply to these patients, but how best to do so. Small peptide formulations, intact protein formulations, branched chain amino acids, and specialty formulas all exist, and their benefits, drawbacks, and potential uses have been investigated. Specific amino acid therapy has become part of the concept of immunonutrition, or the modification and enhancement of the immune response with specific nutrients. In this article, we describe the changes in outcomes demonstrated through the provision of protein, both as a macronutrient and as specific amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin E, Calvano SE, Lowry SF. Systemic response to injury and metabolic support. In: Brunicardi FC, Anderson DK, et al., editors. Schwartz’s principles of surgery. New York: McGraw-Hill; 2005. p. 3–41.

    Google Scholar 

  2. •• Young LS, Kearns LR, Schoepfel SL. Protein. In: Gottschlich MM, editor. The A.S.P.E.N. Nutrition Support Curriculum. Cincinatti: A.S.P.E.N.; 2007. p. 71–87 This reference is exceedingly important as it provides a practical guide and approach to the care of the adult patient requiring nutritional support.

    Google Scholar 

  3. Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on critical outcome in ICU patients. Clin Nutr. 2005;24:502–9.

    Article  PubMed  Google Scholar 

  4. Jabbar A, Wei-Kuo C, McClave SA, et al. Gut immunology and the differential response to feeding and starvation. Nutr Clin Pract. 2003;18:461–82.

    Article  PubMed  Google Scholar 

  5. Shaw JH, Wildborne M, Wolfe RR. Whole body protein kinetics in severely septic patients. The response to glucose infusion and total parenteral nutrition. Ann Surg. 1987;205:288–94.

    Article  PubMed  CAS  Google Scholar 

  6. Reeds PJ. Dispensible and indispensible amino acids for humans. J Nutr. 2000;130:1835S–40.

    PubMed  CAS  Google Scholar 

  7. Griffiths RD, Allen KD, Andrews FJ, et al. Infection, multiple organ failure, and survival in the intensive care unit: influence of glutamine-supplemented parenteral nutrition on acquired infection. Nutrition. 2002;18:546–52.

    Article  PubMed  CAS  Google Scholar 

  8. Alpers DH. Glutamine: do the data support the cause for glutamine supplementation in humans? Gastroenterology. 2006;130:S106–16.

    Article  PubMed  CAS  Google Scholar 

  9. Monk DN, Plank LD, Franch-Arcas G, et al. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395–405.

    Article  PubMed  CAS  Google Scholar 

  10. Martindale RG, Zhou M. Nutrition and metabolism. In Physiologic Basis of Surgery. 2008.

  11. Wilmore DW. Metabolic management of the critically ill. New York: Plenum; 1977. p. 193.

    Google Scholar 

  12. Stroud M. Protein and the critically ill; do we know what to give? Proc Nutr Soc. 2007;66:378–83.

    Article  PubMed  CAS  Google Scholar 

  13. •• McClave SA, Martindale RG, Vanek VW, et al. A.S.P.E.N. Board of Directors; American College of Critical Care Medicine; Society of Critical Care Medicine: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN 2009;33:277–316. This reference is of importance as it is the reference of most practitioners in the nutritional support of the critically ill in America. The entire guideline is found online at the ASPEN website.

    Google Scholar 

  14. Kreymann KG, Berger MM, Deutz NE, et al. ESPEN (European Society for Parenteral and Enteral Nutrition): ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr. 2006;25:210–33.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs DG, Jacobs DO, Kudsk KA, et al. Practice management guidelines for nutrition support of the trauma patient. J Trauma. 2004;57:660–79.

    Article  PubMed  Google Scholar 

  16. Chadalavada R, Sappati BRS, Maxwell J, et al. Nutrition in hepatic encephalopathy. Nutr Clin Pract. 2010;25(3):257–64.

    Article  PubMed  Google Scholar 

  17. Marchesini G, Bianchi G, Rossi B, et al. Nutritional treatment with branched-chain amino acids in advanced liver cirrhosis. J Gastroenterol. 2000;35 Suppl 12:7–12.

    PubMed  CAS  Google Scholar 

  18. Bianchi G, Marzocchi R, Agostini F, et al. Update on branched-chain amino acid supplementation in liver diseases. Curr Opin Gastroenterol. 2005;21(2):197–200.

    Article  PubMed  CAS  Google Scholar 

  19. Charlton M. Branched chain amino acid enriched supplements as therapy for liver disease. J Nutr. 2006;136(1 Suppl):295S–8.

    PubMed  CAS  Google Scholar 

  20. Garneata L, Mircescu G. Nutritional intervention in uremia—myth or reality? J Ren Nutr. 2010;20(5 Suppl):S31–4.

    Article  PubMed  Google Scholar 

  21. Levey AS, Greene T, Sarnak MJ, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow up of the MDRD Study. Am J Kidney Dis. 2006;48(6):879–88.

    Article  PubMed  CAS  Google Scholar 

  22. Mircescu G, Garneata L, Stancu SH, et al. Effects of a supplemented hypoproteic diet in chronic kidney disease. J Ren Nutr. 2007;17(3):179–88.

    Article  PubMed  Google Scholar 

  23. Aparicio M, Chauveau P, Combe C. Low protein diets and outcome of renal patients. J Nephrol. 2001;14(6):433–9.

    PubMed  CAS  Google Scholar 

  24. Menon V, Kopple JD, Wang X, et al. Effect of a very low-protein diet on outcomes: long-term follow up of the MDRD Study. Am J Kidney Dis. 2009;53(2):208–17.

    Article  PubMed  CAS  Google Scholar 

  25. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people (review). J Nutr Biochem. 2003;14(5):251–8.

    Article  PubMed  CAS  Google Scholar 

  26. De Aguilar-Nascimento JE, Prado Silveira BR, Dock-Nascimento DB. Early enteral nutrition with whey protein or casein in elderly patients with acute ischemic stroke: a double-blind randomized trial. 2010;15:310–24.

  27. Nakamura K, Ogawa S, Dariki K, et al. A new immune modulating diet enriched with whey-based hydrolyzed peptide, fermented milk, and isomaltulose attenuates gut ischemia-reperfusion injury in mice. Clin Nutr 2011;Epub Jan 29, 2011.

  28. Poullain MG, Cezard JP, Roger L, et al. Effect of whey proteins, their oligopeptide hydrosylates and free amino acid mixtures on growth and nitrogen retention in fed and starved rats. JPEN. 1989;13:382–6.

    CAS  Google Scholar 

  29. Rerat A, Nunes CS, Mendy FG, et al. Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymatic hydrosylate or free amino acids. Br J Nutr. 1988;60:121–36.

    Article  PubMed  CAS  Google Scholar 

  30. Birke H, Thoiacus-Ussing O, Hessov I. Trophic effect of dietary peptides on mucosa in the rat bowel. J Parent Ent Nutr. 1990;14(Suppl):2. Abstract.

    Google Scholar 

  31. Zaloga GP, Ward KA, Prielipp RC. Effect of enteral diets on whole body and gut growth in unstressed rats. J Parent Enteral Nutr. 1991;15:42–7.

    Article  CAS  Google Scholar 

  32. Meredith JW, Ditesheim JA, Zaloga GP, et al. Visceral protein levels in trauma patients are greater with peptide diet than with intact protein diet. J Trauma. 1990;30(7):825–9.

    Article  PubMed  CAS  Google Scholar 

  33. Polk DB, Hattner JT, Kerner JA. Improved growth and disease activity after intermittent administration of a defined formula diet in children with Crohn’s disease. J Parent Enteral Nutr. 1992;16:499–504.

    Article  CAS  Google Scholar 

  34. Hartman C, Eliakim R, Shamir R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J Gastroenterol. 2009;15(21):2570–8.

    Article  PubMed  CAS  Google Scholar 

  35. Oudemans-van Straaten HM, Bosman RJ, Treskes M, et al. Plasma glutamine depletion and patient outcome in acute ICU admissions. Inten Care Med. 2001;27:84–90.

    Article  CAS  Google Scholar 

  36. Wischmeyer PE. Glutamine: role in gut protection in critical illness. Curr Op Clin Nutr. 2006;9:607–12.

    Article  CAS  Google Scholar 

  37. Novak F, Heyland DK, Avenell A, et al. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30:2022–9.

    Article  PubMed  CAS  Google Scholar 

  38. Macario AJL, Conway de Macario E. Sick chaperones, cellular stress and disease. NEJM. 2005;353:1489–501.

    Article  PubMed  CAS  Google Scholar 

  39. Oliveira GP, Dias CM, Rocco PR. Understanding the mechanisms of glutamine action in critically ill patients. An Acad Bras Cienc. 2010;82(2):417–30.

    Article  PubMed  CAS  Google Scholar 

  40. Kelly D, Wischmeyer PE. Role of L-glutamine in critical illness: new insights. Curr Opin Clin Nutr Metab Care. 2003;6(2):217–22.

    Article  PubMed  CAS  Google Scholar 

  41. Singleton KD, Beckey VE, Wischmeyer PE. Glutamine prevents activation of nfkappab and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock. 2005;24(6):583–9.

    Article  PubMed  CAS  Google Scholar 

  42. Zhou M, Martindale RG. Arginine in the critical care setting. Jour Nutr. 2007;137:1687S–92.

    CAS  Google Scholar 

  43. Albina JE, Mills CD, Henry Jr WL, et al. Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deaminase pathway. J Immunol. 1989;143:3641–6.

    PubMed  CAS  Google Scholar 

  44. Morris SM. Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care. 2004;7:45–51.

    Article  PubMed  CAS  Google Scholar 

  45. Chiarla C, Giovannini I, Siegel JH. Plasma arginine correlations in trauma and sepsis. Amino Acids. 2006;30:81–6.

    Article  PubMed  CAS  Google Scholar 

  46. Arrigoni F, Ahmetaj B, Leiper J. The biology and therapeutic potential of the DDAH/AMDA pathway. Curr Pharm Des. 2010;16(37):4089–102.

    Article  PubMed  CAS  Google Scholar 

  47. Pope AJ, Karrupiah K, Xia Y, et al. Role of dimethylarginine dimethylaminohydrolases in the regulation of nitric oxide production. J Biol Chem. 2009;284(51):36338–47.

    Article  Google Scholar 

  48. • Fortin CF, McDonald PP, Fulop T, et al. Sepsis, leukocytosis, and nitric oxide (NO): An intricate affair. Shock 2010;33(4):344–52. This paper is of importance as it clearly delineates the role of NO in sepsis and how arginine is involved. It makes the arginine argument clear.

    Article  PubMed  CAS  Google Scholar 

  49. Suchner U, Heyland DK, Peter K. Immune-modulatory actions of arginine in the critically ill. Brit Jour Nutr. 2002;87 Suppl 1:S121–32.

    Article  CAS  Google Scholar 

  50. Kao CC, Bandi V, Guntupalli KK, et al. Arginine, citrulline and nitric oxide metabolism in sepsis. Clin Sci (Lond). 2009;117(1):23–30.

    Article  CAS  Google Scholar 

  51. Luiking YC, Poeze M, Ramsay G, Deutz NE. Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr. 2009;89(1):142–52.

    Article  PubMed  CAS  Google Scholar 

  52. Pan M, Choudry HA, Epler MJ, et al. Arginine transport in catabolic disease states. Jour Nutr. 2004;134:2826S–9. discussion 2853S.

    CAS  Google Scholar 

  53. Chawla RK, Berry CJ, Kutner MH, et al. Plasma concentration of transulfuration pathway products during nasoenteral and intravenous hyperalimentation of malnourished patients. Am J Clin Nutr. 1985;42:577–84.

    PubMed  CAS  Google Scholar 

  54. Braga M, Gianotti L, Giovanni R, et al. Perioperative immunonutrition in patients undergoing cancer surgery. Arch Surg. 1999;134:428–33.

    Article  PubMed  CAS  Google Scholar 

  55. Senkal M, Zumtobel V, Karl-Heinz B, et al. Outcome and cost-effectiveness of perioperative enteral immunonutrition in patients undergoing elective upper gastrointestinal tract surgery. Arch Surg. 1999;134:1309–16.

    Article  PubMed  CAS  Google Scholar 

  56. Snyderman CH, Kachman K, Molseed L, et al. Reduced postoperative infections with an immune-enhancing nutritional supplement. Laryng. 1999;109(6):915–21.

    Article  CAS  Google Scholar 

  57. Riso S, Aluffi P, Brugnanai M, et al. Postoperative enteral immunonutrition in head and neck cancer patients. Eur J Clin Nutr. 2005;59:145–7.

    Article  Google Scholar 

  58. Tepaske R, Velthuis H, Oudemans-van Straaten HM, et al. Effect of preoperative oral immune-enhancing nutritional supplement on patients at high risk of infection after cardiac surgery: a randomized placebo-controlled trial. Lancet. 2001;358:696–701.

    Article  PubMed  CAS  Google Scholar 

  59. Gianotti L, Braga M, Nespoli L, et al. A randomized controlled trial preoperative oral supplementation with a specialized diet in patients with gastrointestinal cancer. Gastroenterology. 2002;122:1763–70.

    Article  PubMed  CAS  Google Scholar 

  60. Braga M, Gianotti L, Nespoli L, et al. Nutritional approach in malnourished surgical patients: a prospective randomized study. Arch Surg. 2002;137:174–80.

    Article  PubMed  Google Scholar 

  61. Giger U, Buchler M, Farhadi J, et al. Preoperative immunonutrition suppresses perioperative inflammatory response in patients with major abdominal surgery—a randomized controlled pilot study. Ann Surg Onc. 2007;14(10):2798–806.

    Article  Google Scholar 

  62. Klek S, Kulig J, Sierzega M, et al. The impact of immunostimulating nutrition on infectious complications after upper gastrointestinal surgery: a prospective randomized clinical trial. Arch Surg. 2008;248(2):212–20.

    Google Scholar 

  63. Fukuda T, Seto Y, Hiki N, et al. Can immune-enhancing nutrients reduce postoperative complications in patients undergoing esophageal surgery? Dis Esophagus. 2008;21(8):708–11.

    Article  PubMed  CAS  Google Scholar 

  64. Helminen H, Raitanen M, Kellosalo J. Immunonutrition in elective gastrointestinal surgery patients. Scand J Surg. 2007;96(1):46–50.

    PubMed  CAS  Google Scholar 

  65. Ryan A, Power D, Reynolds J. Immunonutrition in upper gastrointestinal surgery. Arch Surg. 2009;249(6):1062–3.

    Google Scholar 

  66. Okamoto Y, Keiichi O, Kunihiko I, et al. Attenuation of the systemic inflammatory response and infectious complications after gastrectomy with preoperative oral arginine and omega 3 fatty acids supplemented immunonutrition. WJS. 2009;33(9):1815–21.

    Article  Google Scholar 

Download references

Disclosure

S.A. McClave: Received honoraria from Nettle Pharmaceuticals and Abbott Pharmaceuticals, and worked as a consultant for Kimberly Clark and Covidien Pharmaceuticals; C.M. Lawson; K.R. Miller; and V.L. Smith reported no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy M. Lawson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, C.M., Miller, K.R., Smith, V.L. et al. Appropriate Protein and Specific Amino Acid Delivery Can Improve Patient Outcome: Fact or Fantasy?. Curr Gastroenterol Rep 13, 380–387 (2011). https://doi.org/10.1007/s11894-011-0201-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-011-0201-0

Keywords

Navigation