Skip to main content
Log in

Immunopathogenesis of celiac disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Celiac disease is a chronic inflammatory disease caused by dietary gluten that affects 1% of Europeans and North Americans. Gluten is unusual because it is consumed in relatively large amounts, is partially resistant to luminal digestion in the human small intestine, and when absorbed, is susceptible to post-translational modification (deamidation) by mucosal transglutaminase. Deamidation of certain gluten peptides enhances their binding to HLA-DQ2 or HLA-DQ8 and creates neodeterminants capable of stimulating CD4+ T cells. Only 5% of individuals with HLA-DQ2 and 0.5% of those with HLA-DQ8 have celiac disease, so immunologic tolerance to gluten is the norm. The critical steps in the immunopathogenesis of celiac disease are broadly understood, but little is known regarding mechanisms of tolerance to gluten. The effectiveness of therapies being developed for celiac disease will test the accuracy of our current understanding of disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hausch F, Shan L, Santiago NA, et al.: Intestinal digestive resistance of immunodominant gliadin peptides. Am J Physiol Gastrointest Liver Physiol 2002, 283:G996–G1003.

    PubMed  CAS  Google Scholar 

  2. Shan L, Molberg O, Parrot I, et al.: Structural basis for gluten intolerance in celiac sprue. Science 2002, 297:2275–2279.

    Article  PubMed  CAS  Google Scholar 

  3. Vader LW, Stepniak DT, Bunnik EM, et al.: Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 2003, 125:1105–1113.

    Article  PubMed  CAS  Google Scholar 

  4. Vader W, Kooy Y, Van Veelen P, et al.: The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002, 122:1729–1737.

    Article  PubMed  CAS  Google Scholar 

  5. Shan L, Qiao SW, Arentz-Hansen H, et al.: Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J Proteome Res 2005, 4:1732–1741.

    Article  PubMed  CAS  Google Scholar 

  6. Arentz-Hansen H, McAdam SN, Molberg O, et al.: Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 2002, 123:803–809.

    Article  PubMed  Google Scholar 

  7. Arentz-Hansen H, Korner R, Molberg O, et al.: The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 2000, 191:603–612.

    Article  PubMed  CAS  Google Scholar 

  8. Karell K, Louka AS, Moodie SJ, et al.: HLA types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results from the European Genetics Cluster on Celiac Disease. Hum Immunol 2003, 64:469–477.

    Article  PubMed  CAS  Google Scholar 

  9. Karinen H, Karkkainen P, Pihlajamaki J, et al.: Gene dose effect of the DQB1*0201 allele contributes to severity of coeliac disease. Scand J Gastroenterol 2006, 41:191–199.

    Article  PubMed  CAS  Google Scholar 

  10. Vader W, Stepniak D, Kooy Y, et al.: The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci U S A 2003, 100:12390–12395.

    Article  PubMed  CAS  Google Scholar 

  11. van Heel DA, Franke L, Hunt KA, et al.: A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007, 39:827–829.

    Article  PubMed  Google Scholar 

  12. Hunt KA, Zhernakova A, Turner G, et al.: Newly identified genetic risk variants for celiac disease related to the immune response. Nat Genet 2008, 40:395–402.

    Article  PubMed  CAS  Google Scholar 

  13. Monsuur AJ, de Bakker PI, Alizadeh BZ, et al.: Myosin IXB variant increases the risk of celiac disease and points toward a primary intestinal barrier defect. Nat Genet 2005, 37:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  14. Hunt KA, Monsuur AJ, McArdle WL, et al.: Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut 2006, 55:969–972.

    Article  PubMed  CAS  Google Scholar 

  15. Norris JM, Barriga K, Hoffenberg EJ, et al.: Risk of celiac disease autoimmunity and timing of gluten introduction in the diet of infants at increased risk of disease. JAMA 2005, 293:2343–2351.

    Article  PubMed  CAS  Google Scholar 

  16. Ivarsson A, Persson LA, Hernell O: Does breast-feeding affect the risk for coeliac disease? Adv Exp Med Biol 2000, 478:139–149.

    Article  PubMed  CAS  Google Scholar 

  17. Ivarsson A, Hernell O, Nystrom L, Persson LA: Children born in the summer have increased risk for coeliac disease. J Epidemiol Community Health 2003, 57:36–39.

    Article  PubMed  CAS  Google Scholar 

  18. Stene LC, Honeyman MC, Hoffenberg EJ, et al.: Rotavirus infection frequency and risk of celiac disease autoimmunity in early childhood: a longitudinal study. Am J Gastroenterol 2006, 101:2333–2340.

    Article  PubMed  CAS  Google Scholar 

  19. Henderson KN, Tye-Din JA, Reid HH, et al.: A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity 2007, 27:23–34.

    Article  PubMed  CAS  Google Scholar 

  20. Schumann M, Richter JF, Wedell I, et al.: Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue. Gut 2008, 57:747–754.

    Article  PubMed  CAS  Google Scholar 

  21. Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, et al.: Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J Exp Med 2008, 205:143–154.

    Article  PubMed  CAS  Google Scholar 

  22. Matysiak-Budnik T, Candalh C, Dugave C, et al.: Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 2003, 125:696–707.

    Article  PubMed  CAS  Google Scholar 

  23. Fasano A, Not T, Wang W, et al.: Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000, 355:1518–1519.

    Article  PubMed  CAS  Google Scholar 

  24. Godkin AJ, Davenport MP, Willis A, et al.: Use of complete eluted peptide sequence data from HLA-DR and-DQ molecules to predict T cell epitopes, and the influence of the nonbinding terminal regions of ligands in epitope selection. J Immunol 1998, 161:850–858.

    PubMed  CAS  Google Scholar 

  25. Dieterich W, Ehnis T, Bauer M, et al.: Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997, 3:797–801.

    Article  PubMed  CAS  Google Scholar 

  26. Molberg O, McAdam SN, Korner R, et al.: Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med 1998, 4:713–717. (Erratum appears in Nat Med 1998, 4:974.)

    Article  PubMed  CAS  Google Scholar 

  27. Fleckenstein B, Molberg O, Qiao SW, et al.: Gliadin T cell epitope selection by tissue transglutaminase in celiac disease. Role of enzyme specificity and pH influence on the transamidation versus deamidation process. J Biol Chem 2002, 277:34109–34116.

    Article  PubMed  CAS  Google Scholar 

  28. Vader LW, de Ru A, van der Wal Y, et al.: Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. J Exp Med 2002, 195:643–649.

    Article  PubMed  CAS  Google Scholar 

  29. Stepniak D, Koning F: Celiac disease—sandwiched between innate and adaptive immunity. Hum Immunol 2006, 67:460–468.

    Article  PubMed  CAS  Google Scholar 

  30. Dieterich W, Esslinger B, Trapp D, et al.: Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut 2006, 55:478–484.

    Article  PubMed  CAS  Google Scholar 

  31. van de Wal Y, Kooy Y, van Veelen P, et al.: Selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J Immunol 1998, 161:1585–1588.

    PubMed  Google Scholar 

  32. Kim CY, Quarsten H, Bergseng E, et al.: Structural basis for HLA-DQ2-mediated presentation of gluten epitopes in celiac disease. Proc Natl Acad Sci U S A 2004, 101:4175–4179.

    Article  PubMed  CAS  Google Scholar 

  33. Lundin KE, Scott H, Hansen T, et al.: Gliadin-specific, HLA-DQ(alpha 1*0501,beta 1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. J Exp Med 1993, 178:187–196.

    Article  PubMed  CAS  Google Scholar 

  34. Molberg O, Kett K, Scott H, et al.: Gliadin specific, HLA DQ2-restricted T cells are commonly found in small intestinal biopsies from coeliac disease patients, but not from controls. Scand J Immunol 1997, 46(1):103–108.

    Article  CAS  Google Scholar 

  35. Lundin KE, Scott H, Fausa O, et al.: T cells from the small intestinal mucosa of a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by DQ8. Hum Immunol 1994, 41:285–291.

    Article  PubMed  CAS  Google Scholar 

  36. Nilsen EM, Lundin KE, Krajci P, et al.: Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 1995, 37:766–776.

    Article  PubMed  CAS  Google Scholar 

  37. Ráki M, Fallang LE, Brottveit M, et al.: Tetramer visualization of gut-homing gluten-specific T cells in the peripheral blood of celiac disease patients. Proc Natl Acad Sci U S A 2007, 104:2831–2836.

    Article  PubMed  Google Scholar 

  38. Qiao SW, Bergseng E, Molberg O, et al.: Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. J Immunol 2005, 175:254–261.

    PubMed  CAS  Google Scholar 

  39. Arentz-Hansen H, Fleckenstein B, Molberg O, et al.: The molecular basis for oat intolerance in patients with celiac disease. PLoS Med 2004, 1:e1.

    Article  PubMed  Google Scholar 

  40. Anderson RP, Degano P, Godkin AJ, et al.: In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 2000, 6:337–342.

    Article  PubMed  CAS  Google Scholar 

  41. van de Wal Y, Kooy YM, van Veelen PA, et al.: Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci U S A 1998, 95:10050–10054.

    Article  PubMed  Google Scholar 

  42. Tollefsen S, Arentz-Hansen H, Fleckenstein B, et al.: HLA-DQ2 and-DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest 2006, 116:2226–2236.

    Article  PubMed  CAS  Google Scholar 

  43. van de Wal Y, Kooy YM, van Veelen P, et al.: Glutenin is involved in the gluten-driven mucosal T cell response. Eur J Immunol 1999, 29:3133–3139.

    Article  PubMed  Google Scholar 

  44. Gjertsen HA, Sollid LM, Ek J, et al.: T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR,-DQ, or-DP molecules. Scand J Immunol 1994, 39:567–574.

    Article  PubMed  CAS  Google Scholar 

  45. Ben-Horin S, Green PH, Bank I, et al.: Characterizing the circulating, gliadin-specific CD4+ memory T cells in patients with celiac disease: linkage between memory function, gut homing and Th1 polarization. J Leukoc Biol 2006, 79:676–685.

    Article  PubMed  CAS  Google Scholar 

  46. Anderson RP, van Heel DA, Tye-Din JA, et al.: T cells in peripheral blood after gluten challenge in coeliac disease. Gut 2005, 54:1217–1223.

    Article  PubMed  CAS  Google Scholar 

  47. Beissbarth T, Tye-Din JA, Smyth GK, et al.: A systematic approach for comprehensive T-cell epitope discovery using peptide libraries. Bioinformatics 2005, 21(Suppl 1):i29–i37.

    Article  PubMed  CAS  Google Scholar 

  48. Gjertsen HA, Lundin KE, Sollid LM, et al.: T cells recognize a peptide derived from alpha-gliadin presented by the celiac disease-associated HLA-DQ (alpha 1*0501, beta 1*0201) heterodimer. Hum Immunol 1994, 39:243–252.

    Article  PubMed  CAS  Google Scholar 

  49. Jabri B, de Serre NP, Cellier C, et al.: Selective expansion of intraepithelial lymphocytes expressing the HLA-E-specific natural killer receptor CD94 in celiac disease. Gastroenterology 2000, 118:867–879.

    Article  PubMed  CAS  Google Scholar 

  50. Hue S, Mention JJ, Monteiro RC, et al.: A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 2004, 21:367–377.

    Article  PubMed  Google Scholar 

  51. Meresse B, Chen Z, Ciszewski C, et al.: Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 2004, 21:357–366.

    Article  PubMed  CAS  Google Scholar 

  52. Bhagat G, Naiyer AJ, Shah JG, et al.: Small intestinal CD8+TCRγδ+NKG2A+ intraepithelial lymphocytes have attributes of regulatory cells in patients with celiac disease. J Clin Invest 2008, 118:281–293.

    Article  PubMed  CAS  Google Scholar 

  53. Shepherd SJ, Gibson PR: Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc 2006, 106:1631–1639.

    Article  PubMed  Google Scholar 

  54. Wahnschaffe U, Ullrich R, Riecken EO, Schulzke JD: Celiac disease-like abnormalities in a subgroup of patients with irritable bowel syndrome. Gastroenterology 2001, 121:1329–1338.

    Article  PubMed  CAS  Google Scholar 

  55. Kunkel EJ, Campbell JJ, Haraldsen G, et al.: Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 2000, 192:761–768.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tye-Din, J., Anderson, R. Immunopathogenesis of celiac disease. Curr Gastroenterol Rep 10, 458–465 (2008). https://doi.org/10.1007/s11894-008-0085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-008-0085-9

Keywords

Navigation