Skip to main content

Advertisement

Log in

Genetic analysis of cholesterol gallstone formation: Searching for Lith (gallstone) genes

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

The genetics of cholesterol cholelithiasis is complex because a number of interacting genes regulate biliary cholesterol homeostasis. Quantitative trait locus (QTL) analysis is a powerful method for identifying primary ratelimiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes. The subsequent positional cloning of such genes responsible for QTLs may lead to the discovery of pathophysiologic functions of Lith (gallstone) genes. In this review, we present a map of candidate genes for Lith genes that may determine gallstone susceptibility in mice. The physical-chemical, pathophysiologic, and genetic studies of Lith genes in bile, liver, gallbladder, and intestine will be crucial for elucidating the genetic mechanisms of cholesterol gallstone disease in mice and in humans. Because exceptionally close homology exists between mouse and human genomes, the orthologous human LITH genes can often be recognized after mouse genes are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Korstanje R, Paigen B: From QTL to gene: the harvest begins. Nat Genet 2002, 31:235–236.

    Article  PubMed  CAS  Google Scholar 

  2. Lammert F, Carey MC, Paigen B: Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map. Gastroenterology 2001, 120:221–238.

    PubMed  CAS  Google Scholar 

  3. Admirand WH, Small DM: The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest 1968, 47:1043–1052.

    PubMed  CAS  Google Scholar 

  4. Carey MC, Small DM: The physical chemistry of cholesterol solubility in bile: relationship to gallstone formation and dissolution in man. J Clin Invest 1978, 61:998–1026.

    PubMed  CAS  Google Scholar 

  5. Wang DQ-H, Paigen B, Carey MC: Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical-chemistry of gallbladder bile. J Lipid Res 1997, 38:1395–1411. These authors investigated the physical-chemical phenotypes of mouse gallbladder biles in the gallstone-susceptible C57L/J strain compared with the gallstone-resistant AKR/J strain and their F1 progeny during 56 days on the lithogenic diet. The definition of the physical chemistry of lithogenesis should aid in further elucidation of the Lith genes and the proteins they encode.

    PubMed  CAS  Google Scholar 

  6. Wang DQ-H, Lammert F, Cohen DE, et al.: Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. Am J Physiol 1999, 276:G751-G760.

    PubMed  CAS  Google Scholar 

  7. Wang DQ-H, Lammert F, Paigen B, et al.: Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: pathophysiology of biliary lipid secretion. J Lipid Res 1999, 40:2066–2079. Compared with gallstone-resistant AKR/J mice, Lith genes in gallstone-susceptible C57L/J mice and their F1 progeny determine increased outputs of all biliary lipids but promote cholesterol hypersecretion disproportionately to lecithin and bile salt outputs, thereby inducing lithogenic bile formation.

    PubMed  CAS  Google Scholar 

  8. Holan KR, Holzbach RT, Hermann RE, et al.: Nucleation time: a key factor in the pathogenesis of cholesterol gallstone disease. Gastroenterology 1979, 77:611–617.

    PubMed  CAS  Google Scholar 

  9. Sedaghat A, Grundy SM: Cholesterol crystals and the formation of cholesterol gallstones. N Engl J Med 1980, 302:1274–1277.

    Article  PubMed  CAS  Google Scholar 

  10. Konikoff FM, Chung DS, Donovan JM, et al.: Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile: evidence that cholesterol does not nucleate classic monohydrate plates. J Clin Invest 1992, 90:1155–1160.

    PubMed  CAS  Google Scholar 

  11. Gantz DL, Wang DQ-H, Carey MC, et al.: Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles. Biophys J 1999, 76:1436–1451.

    PubMed  CAS  Google Scholar 

  12. Wang DQ-H, Carey MC: Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J Lipid Res 1996, 37:606–630. Report on a comprehensive study of crystallization pathways during cholesterol precipitation from model biles. This systematic study provides a framework for understanding cholesterol crystallization in human and animal biles and for examining physical-chemical factors that influence the kinetics of phase separation.

    PubMed  CAS  Google Scholar 

  13. Wang DQ-H, Carey MC: Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J Lipid Res 1996, 37:2539–2549.

    PubMed  CAS  Google Scholar 

  14. Lee SP, LaMont JT, Carey MC: Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones: studies in the prairie dog. J Clin Invest 1981, 67:1712–1723.

    PubMed  CAS  Google Scholar 

  15. Lee SP, Nicholls JF: Nature and composition of biliary sludge. Gastroenterology 1986, 90:677–686.

    PubMed  CAS  Google Scholar 

  16. Levy PF, Smith BF, LaMont JT: Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology 1984, 87:270–275.

    PubMed  CAS  Google Scholar 

  17. Afdhal NH, Niu N, Gantz D, et al.: Bovine gallbladder mucin accelerates cholesterol monohydrate crystal growth in model bile. Gastroenterology 1993, 104:1515–1523.

    PubMed  CAS  Google Scholar 

  18. Van Erpecum KJ, Wang DQ-H, Lammert F, et al.: Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: soluble pronucleating proteins in gallbladder and hepatic biles. J Hepatol 2001, 35:444–451.

    Article  PubMed  Google Scholar 

  19. Wang DQ-H, Cohen DE, Lammert F, et al.: No pathophysiologic relationship of soluble biliary proteins to cholesterol crystallization in human bile. J Lipid Res 1999, 40:415–425.

    PubMed  CAS  Google Scholar 

  20. Wang DQ-H, Schmitz F, Kopin AS, et al.: Targeted disruption of the cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J Clin Invest 2004, in press.

  21. Yu P, Chen Q, Harnett KM, et al.: Direct G protein activation reverses impaired CCK signaling in human gallbladders with cholesterol stones. Am J Physiol 1995, 269:G659-G665.

    PubMed  CAS  Google Scholar 

  22. Xiao ZL, Chen Q, Amaral J, et al.: CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am J Physiol 1999, 276:G1401-G1407.

    PubMed  CAS  Google Scholar 

  23. Miquel JF, Nunez L, Amigo L, et al.: Cholesterol saturation, not proteins or cholecystitis, is critical for crystal formation in human gallbladder bile. Gastroenterology 1998, 114:1016–1023.

    Article  PubMed  CAS  Google Scholar 

  24. Sampliner RE, Bennett PH, Comess LJ, et al.: Gallbladder disease in Pima Indians: demonstration of high prevalence and early onset by cholecystography. N Engl J Med 1970, 283:1358–1364.

    Article  PubMed  CAS  Google Scholar 

  25. Thistle JL, Schoenfield LJ: Lithogenic bile among young Indian women. N Engl J Med 1971, 284:177–181.

    Article  PubMed  CAS  Google Scholar 

  26. Weiss KM, Ferrell RE, Hanis CL, et al.: Genetics and epidemiology of gallbladder disease in New World native peoples. Am J Hum Genet 1984, 36:1259–1278.

    PubMed  CAS  Google Scholar 

  27. Van der Linden W, Simonson N: Genetic factors in gallstone disease. Clin Gastroenterol 1973, 2:603–614.

    Google Scholar 

  28. Van der Linden W, Simonson N: Familial occurrence of gallstone disease: incidence in parents of young patients. Hum Hered 1973, 23:123–127.

    Article  Google Scholar 

  29. Gilat T, Feldman C, Halpern Z, et al.: An increased familial frequency of gallstones. Gastroenterology 1983, 84:242–246.

    PubMed  CAS  Google Scholar 

  30. Sarin SK, Negi VS, Dewan R, et al.: High familial prevalence of gallstones in the first-degree relatives of gallstone patients. Hepatology 1995, 22:138–141.

    PubMed  CAS  Google Scholar 

  31. Danzinger RG, Gordon H, Schoenfield LJ, et al.: Lithogenic bile in siblings of young women with cholelithiasis. Mayo Clin Proc 1972, 47:762–766.

    PubMed  CAS  Google Scholar 

  32. Antero Kesaniemi Y, Koskenvuo M, Vuoristo M, et al.: Biliary lipid composition in monozygotic and dizygotic pairs of twins. Gut 1989, 30:1750–1756.

    Google Scholar 

  33. Wang DQ-H: Aging per se is an independent risk factor for cholesterol gallstone formation in gallstone susceptible mice. J Lipid Res 2002, 43:1950–1959.

    Article  PubMed  CAS  Google Scholar 

  34. Wang DQ-H, Tazuma S: Effect of beta-muricholic acid on the prevention and dissolution of cholesterol gallstones in C57L/J mice. J Lipid Res 2002, 43:1960–1968.

    Article  PubMed  CAS  Google Scholar 

  35. Hyogo H, Roy S, Paigen B, et al.: Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem 2002, 277:34117–34124.

    Article  PubMed  CAS  Google Scholar 

  36. Hyogo H, Roy S, Cohen DE: Restoration of gallstone susceptibility by leptin in C57BL/6J ob/ob mice. J Lipid Res 2003, 44:1232–1240.

    Article  PubMed  CAS  Google Scholar 

  37. Everson GT, McKinley C, Kern F Jr: Mechanisms of gallstone formation in women: effects of exogenous estrogen (Premarin) and dietary cholesterol on hepatic lipid metabolism. J Clin Invest 1991, 87:237–246.

    PubMed  CAS  Google Scholar 

  38. Akin ML, Uluutku H, Erenoglu C, et al.: Tamoxifen and gallstone formation in postmenopausal breast cancer patients: retrospective cohort study. World J Surg 2003, 27:395–399.

    Article  PubMed  Google Scholar 

  39. Yang H, Petersen GM, Roth MP, et al.: Risk factors for gallstone formation during rapid loss of weight. Dig Dis Sci 1992, 37:912–918.

    Article  PubMed  CAS  Google Scholar 

  40. Wang HH, Afdhal NH, Wang DQ-H: The blockade of estrogen action by Fulvestrant (ICI 182,780) prevents cholesterol gallstone formation in the mouse [abstract]. Hepatology 2003, 38:195A.

    Article  Google Scholar 

  41. Lin JP, Hanis CL, Boerwinkle E: Genetic epidemiology of gallbladder disease in Mexican-Americans and cholesterol 7alpha-hydroxylase gene variation [abstract]. Am J Hum Genet 1994, 55:A48.

    Google Scholar 

  42. Pullinger CR, Eng C, Salen G, et al.: Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002, 110:109–117.

    Article  PubMed  CAS  Google Scholar 

  43. Smit JJ, Schinkel AH, Oude Elferink RP, et al.: Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993, 75:451–462.

    Article  PubMed  CAS  Google Scholar 

  44. Oude Elferink RP, Ottenhoff R, van Wijland M, et al.: Regulation of biliary lipid secretion by mdr2 P-glycoprotein in the mouse. J Clin Invest 1995, 95:31–38.

    Google Scholar 

  45. Rosmorduc O, Hermelin B, Boelle PY, et al.: ABCB4 gene mutation-associated cholelithiasis in adults. Gastroenterology 2003, 125:452–459.

    Article  PubMed  Google Scholar 

  46. Rosmorduc O, Hermelin B, Poupon R: MDR3 gene defect in adults with symptomatic intrahepatic and gallbladder cholesterol cholelithiasis. Gastroenterology 2001, 120:1459–1467.

    Article  PubMed  CAS  Google Scholar 

  47. Jacquemin E, De Vree JM, Cresteil D, et al.: The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 2001, 120:1448–1458.

    Article  PubMed  CAS  Google Scholar 

  48. Shoda J, Oda K, Suzuki H, et al.: Etiologic significance of defects in cholesterol, phospholipid, and bile acid metabolism in the liver of patients with intrahepatic calculi. Hepatology 2001, 33:1194–1205.

    Article  PubMed  CAS  Google Scholar 

  49. Hanis CL, Hewett-Emmett D, Kubrusly LF, et al.: An ultrasound survey of gallbladder disease among Mexican Americans in Starr County, Texas: frequencies and risk factors. Ethn Dis 1993, 3:32–43.

    PubMed  CAS  Google Scholar 

  50. Schneider H, Sanger P, Hanisch E: In vitro effects of cholecystokinin fragments on human gallbladders: evidence for an altered CCK-receptor structure in a subgroup of patients with gallstones. J Hepatol 1997, 26:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  51. Miller LJ, Holicky EL, Ulrich CD, et al.: Abnormal processing of the human cholecystokinin receptor gene in association with gallstones and obesity. Gastroenterology 1995, 109:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  52. Nardone G, Ferber IA, Miller LJ: The integrity of the cholecystokinin receptor gene in gallbladder disease and obesity. Hepatology 1995, 22:1751–1753.

    PubMed  CAS  Google Scholar 

  53. Juvonen T, Kervinen K, Kairaluoma MI, et al.: Gallstone cholesterol content is related to apolipoprotein E polymorphism. Gastroenterology 1993, 104:1806–1813.

    PubMed  CAS  Google Scholar 

  54. Bertomeu A, Ros E, Zambon D, et al.: Apolipoprotein E polymorphism and gallstones. Gastroenterology 1996, 111:1603–1610.

    Article  PubMed  CAS  Google Scholar 

  55. Van Erpecum KJ, Van Berge-Henegouwen GP, Eckhardt ER, et al.: Cholesterol crystallization in human gallbladder bile: relation to gallstone number, bile composition, and apolipoprotein E4 isoform. Hepatology 1998, 27:1508–1516.

    Article  PubMed  Google Scholar 

  56. Fischer S, Dolu MH, Zundt B, et al.: Apolipoprotein E polymorphism and lithogenic factors in gallbladder bile. Eur J Clin Invest 2001, 31:789–795.

    Article  PubMed  CAS  Google Scholar 

  57. Kesaniemi YA, Ehnholm C, Miettinen TA: Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Invest 1987, 80:578–581.

    PubMed  CAS  Google Scholar 

  58. Juvonen T, Savolainen MJ, Kairaluoma MI, et al.: Polymorphisms at the apoB, apoA-I, and cholesteryl ester transfer protein gene loci in patients with gallbladder disease. J Lipid Res 1995, 36:804–812.

    PubMed  CAS  Google Scholar 

  59. Han T, Jiang Z, Suo G, et al.: Apolipoprotein B-100 gene Xba I polymorphism and cholesterol gallstone disease. Clin Genet 2000, 57:304–308.

    Article  PubMed  CAS  Google Scholar 

  60. Tepperman J, Caldwell FT, Tepperman HM: Induction of gallstones in mice feeding a cholesterol-cholic acid containing diet. Am J Physiol 1964, 206:628–634.

    PubMed  CAS  Google Scholar 

  61. Fujihira E, Kaneta S, Ohshima T: Strain difference in mouse cholelithiasis and the effect of taurine on the gallstone formation in C57BL/C mice. Biochem Med 1978, 19:211–217.

    Article  PubMed  CAS  Google Scholar 

  62. Alexander M, Portman OW: Different susceptibilities to the formation of cholesterol gallstones in mice. Hepatology 1987, 7:257–265.

    Article  PubMed  CAS  Google Scholar 

  63. Khanuja B, Cheah YC, Hunt M, et al.: Lith1, a major gene affecting cholesterol gallstone formation among inbred strains of mice. Proc Natl Acad Sci U S A. 1995, 92:7729–7733. This important study provides evidence that cholesterol gallstone formation in gallstone-susceptible C57L/J mice is determined by at least two Lith (gallstone) genes.

    Article  PubMed  CAS  Google Scholar 

  64. Lander ES, Schork NJ: Genetic dissection of complex traits. Science 1994, 265:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  65. Darvasi A: Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998, 18:19–24.

    Article  PubMed  CAS  Google Scholar 

  66. Paigen B, Schork NJ, Svenson KL, et al.: Quantitative trait loci mapping for cholesterol gallstones in AKR/J and C57L/J strains of mice. Physiol Genomics 2000, 4:59–65. This paper describes a genetic mapping strategy to identify regions in the chromosome-containing genes that determine cholesterol gallstone formation in gallstone-susceptible C57L/J mice versus gallstone-resistant AKR/J mice.

    PubMed  CAS  Google Scholar 

  67. Machleder D, Ivandic B, Welch C, et al.: Complex genetic control of HDL levels in mice in response to an atherogenic diet.: coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest 1997, 99:1406–1419.

    Article  PubMed  CAS  Google Scholar 

  68. Wittenburg H, Lammert F, Wang DQ-H, et al.: Interacting QTLs for cholesterol gallstones and gallbladder mucin in AKR and SWR strains of mice. Physiol Genomics 2002, 8:67–77.

    PubMed  CAS  Google Scholar 

  69. Lammert F, Wang DQ-H, Wittenburg H, et al.: Lith genes control mucin accumulation, cholesterol crystallization, and gallstone formation in A/J and AKR/J inbred mice. Hepatology 2002, 36:1145–1154. This work provides new genetic evidence on cholesterol gallstone formation caused by Lith3 in additional strains of inbred mice—A/J versus AKR/J.

    Article  PubMed  CAS  Google Scholar 

  70. Lyons MA, Wittenburg H, Li R, et al.: Lith6: a new QTL for cholesterol gallstones from an intercross of CAST/Ei and DBA/2J inbred mouse strains. J Lipid Res 2003, 44:1763–1771.

    Article  PubMed  CAS  Google Scholar 

  71. Wittenburg H, Lyons MA, Li R, et al.: FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 2003, 125:868–881.

    Article  PubMed  CAS  Google Scholar 

  72. Lammert F, Wang DQ-H, Paigen B, et al.: Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: integrated activities of hepatic lipid regulatory enzymes. J Lipid Res 1999, 40:2080–2090.

    PubMed  CAS  Google Scholar 

  73. Fuchs M, Lammert F, Wang DQ-H, et al.: Sterol carrier protein 2 participates in hypersecretion of biliary cholesterol during gallstone formation in genetically gallstone-susceptible mice. Biochem J 1998, 336:33–37.

    PubMed  CAS  Google Scholar 

  74. Wang DQ-H, Lammert F, Paigen B, et al.: The major gallstone gene (Lith1) is responsible for biliary cholesterol hypersecretion and cholesterol gallstone formation in congenic mice (AKR.L-Lith1S) [abstract]. Gastroenterology 1998, 114:A1361.

    Article  Google Scholar 

  75. Bouchard G, Johnson D, Carver T, et al.: Cholesterol gallstone formation in overweight mice establishes that obesity per se is not linked directly to cholelithiasis risk. J Lipid Res 2002, 43:1105–1113.

    Article  PubMed  CAS  Google Scholar 

  76. Wang DQ-H, Carey MC: Susceptibility to murine cholesterol gallstone formation is not affected by partial disruption of the HDL receptor SR-BI. Biochim Biophys Acta 2002, 1583:141–150.

    PubMed  CAS  Google Scholar 

  77. Amigo L, Mardones P, Ferrada C, et al.: Biliary lipid secretion, bile acid metabolism, and gallstone formation are not impaired in hepatic lipase-deficient mice. Hepatology 2003, 38:726–734.

    Article  PubMed  CAS  Google Scholar 

  78. Amigo L, Quinones V, Mardones P, et al.: Impaired biliary cholesterol secretion and decreased gallstone formation in apolipoprotein E-deficient mice fed a high-cholesterol diet. Gastroenterology 2000, 118:772–779.

    Article  PubMed  CAS  Google Scholar 

  79. Wang HH, Afdhal NH, Wang DQ-H: Targeted disruption of the murine mucin gene 1 decreases susceptibility to cholesterol gallstone formation [abstract]. Gastroenterology 2003, 124:A698.

    Article  Google Scholar 

  80. Buhman KK, Accad M, Novak S, et al.: Resistance to dietinduced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med 2000, 6:1341–1347. This important study documents the impact of ACAT2 deficiency on intestinal cholesterol absorption and hepatic cholesterol metabolism in mice fed low-cholesterol or lithogenic diets.

    Article  PubMed  CAS  Google Scholar 

  81. Lammert F, Wang DQ-H, Hillebrandt S, et al.: Spontaneous cholecysto-and hepatolithiasis in Mdr2 knockout mice: a model for low phospholipid-associated cholelithiasis. Hepatology 2004, 39:117–128.

    Article  PubMed  Google Scholar 

  82. Fuchs M, Hafer A, Munch C, et al.: Disruption of the sterol carrier protein 2 gene in mice impairs biliary lipid and hepatic cholesterol metabolism. J Biol Chem 2001, 276:48058–48065.

    PubMed  CAS  Google Scholar 

  83. Wang R, Salem M, Yousef IM, et al.: Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A 2001, 98:2011–2016.

    Article  PubMed  CAS  Google Scholar 

  84. Yu L, Li-Hawkins J, Hammer RE, et al.: Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002, 110:671–680.

    Article  PubMed  CAS  Google Scholar 

  85. Yu L, Hammer RE, Li-Hawkins J, et al.: Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc Natl Acad Sci U S A 2002, 99:16237–16242.

    Article  PubMed  CAS  Google Scholar 

  86. Dawson PA, Haywood J, Craddock AL, et al.: Targeted deletion of the ileal bile acid transporter eliminates enterohepatic cycling of bile acids in mice. J Biol Chem 2003, 278:33920–33927.

    Article  PubMed  CAS  Google Scholar 

  87. Sehayek E, Shefer S, Nguyen LB, et al.: Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice. Proc Natl Acad Sci U S A 2000, 97:3433–3437.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D.QH., Afdhal, N.H. Genetic analysis of cholesterol gallstone formation: Searching for Lith (gallstone) genes. Curr Gastroenterol Rep 6, 140–150 (2004). https://doi.org/10.1007/s11894-004-0042-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-004-0042-1

Keywords

Navigation