Skip to main content

Advertisement

Log in

Diabetes of the Exocrine Pancreas Related to Hereditary Pancreatitis, an Update

  • Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim was to review evidence about diabetes secondary to hereditary pancreatitis, seeking novel diagnostic and treatment features.

Recent Findings

Hereditary pancreatitis (HP) is an autosomal dominant condition, characterized by recurrent episodes of acute pancreatitis, progression to fibrosis, and chronic pancreatitis. Clinical presentation includes diabetes of the exocrine pancreas (DEP). HP prevalence ranges from 0.3 to 0.57 per 100,000 people, with up to 80% of these develop DEP. This condition often requires specific interventions: with regard to metabolic control, metformin is the first choice for those with mild DEP, and for those in advanced disease, insulin is considered the first-line therapy. Insulin analogues and insulin pump therapy are preferred due to the brittle glycemic pattern and risk of hypoglycemia. In case of exocrine insufficiency, pancreatic enzyme replacement therapy is recommended. Pancreatic polypeptide administration is a promising novel treatment feature.

Summary

DEP due to HP appears to be a misdiagnosed condition. The requirement of specific management demonstrates the importance of this matter; therefore, appropriate recognition and classification are important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Howes N, Lerch MM, Greenhalf W, Stocken DD, Ellis I, Simon P, et al. Clinical and genetic characteristics of hereditary pancreatitis in Europe. Clin Gastroenterol Hepatol. 2004;2:252–61 It is one of the most robust HP regional series and presented an estimated HP prevalence, cumulative risk of DEP as also the diagnostic criteria of HP used in our study.

    Article  CAS  PubMed  Google Scholar 

  2. Comfort MW, Steinberg AG. Pedigree of a family with hereditary chronic relapsing pancreatitis. Gastroenterology. 1952:54–63. https://doi.org/10.1016/s0016-5085(52)80120-9.

    Article  CAS  PubMed  Google Scholar 

  3. Whitcomb DC, Gorry MC, Preston RA, Furey W, Sossenheimer MJ, Ulrich CD, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996:141–5. https://doi.org/10.1038/ng1096-141.

    Article  CAS  PubMed  Google Scholar 

  4. Whitcomb DC, et al. Gastroenterology. 2013:1292–302. https://doi.org/10.1053/j.gastro.2013.01.069.

    Article  CAS  PubMed  Google Scholar 

  5. Shelton CA, Whitcomb DC. Genetics and treatment options for recurrent acute and chronic pancreatitis. Curr Treat Options Gastroenterol. 2014;12:359–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rosendahl J, Landt O, Bernadova J, Kovacs P, Teich N, Bödeker H, et al. CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancreatitis: is the role of mutated CFTR overestimated? Gut. 2013:582–92. https://doi.org/10.1136/gutjnl-2011-300645.

    Article  PubMed  CAS  Google Scholar 

  7. Chen J-M, Férec C. Genetics and pathogenesis of chronic pancreatitis: The 2012 update. Clin Res Hepatol Gastroenterol. 2012:334–40. https://doi.org/10.1016/j.clinre.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  8. Whitcomb DC, Alzheimer’s Disease Genetics Consortium, LaRusch J, Krasinskas AM, Klei L, Smith JP, et al. Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nat Genet. 2012:1349–54. https://doi.org/10.1038/ng.2466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosendahl J, Bödeker H, Mössner J, Teich N. Orphanet J Rare Dis. 2007:1. https://doi.org/10.1186/1750-1172-2-1 http://ojrd.biomedcentral.com/articles/10.1186/1750-1172-2-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26(Suppl 1):S5–20.

    Google Scholar 

  11. American Diabetes Association. 2. Classification and diagnosis of diabetes: diabetes care. 2020;43:S14–31.

  12. Ewald N, Kaufmann C, Raspe A, Kloer HU, Bretzel RG, Hardt PD. Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab Res Rev. 2012;28:338–42.

    Article  CAS  PubMed  Google Scholar 

  13. Seicean A, Tantău M, Grigorescu M, Mocan T, Seicean R, Pop T. Mortality risk factors in chronic pancreatitis. J Gastrointestin Liver Dis. 2006;15:21–6.

    PubMed  Google Scholar 

  14. Xu G, Liu B, Sun Y, Du Y, Snetselaar LG, Hu FB, et al. Prevalence of diagnosed type 1 and type 2 diabetes among US adults in 2016 and 2017: population based study. BMJ. 2018;362:k1497.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hart PA, Bellin MD, Andersen DK, Bradley D, Cruz-Monserrate Z, Forsmark CE, et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol. 2016;1:226–37.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shelton C, Whitcomb DC. Hereditary chronic pancreatitis. Pancreas. 2018:374–83. https://doi.org/10.1002/9781119188421.ch45.

    Chapter  Google Scholar 

  17. Hardt PD, Brendel MD, Kloer HU, Bretzel RG. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed? Diabetes Care. 2008;31(Suppl 2):S165–9.

    Article  PubMed  Google Scholar 

  18. •• Ewald N, Bretzel RG. Diabetes mellitus secondary to pancreatic diseases (Type 3c) — are we neglecting an important disease? European Journal of Internal Med. 2013:203–6. https://doi.org/10.1016/j.ejim.2012.12.017This study proposed a diagnostic criteria for DEP secondary to HP, intending to fill the absence of a precise classification.

    Article  PubMed  Google Scholar 

  19. Malka D, Hammel P, Sauvanet A, Rufat P, O’Toole D, Bardet P, et al. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology. 2000:1324–32. https://doi.org/10.1053/gast.2000.19286.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao AY, Tan MLY, Wu LM, Asrani VM, Windsor JA, Yadav D, et al. Global incidence and mortality of pancreatic diseases: a systematic review, meta-analysis, and meta-regression of population-based cohort studies. Lancet Gastroenterol Hepatol. 2016;1:45–55.

    Article  PubMed  Google Scholar 

  21. Lévy P, Domínguez-Muñoz E, Imrie C, Löhr M, Maisonneuve P. Epidemiology of chronic pancreatitis: burden of the disease and consequences. United European Gastroenterol J. 2014;2:345–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joergensen MT, Brusgaard K, Crüger DG, Gerdes A-M, de Muckadell OSB. Genetic, epidemiological, and clinical aspects of hereditary pancreatitis: a population-based cohort study in Denmark. Am J Gastroenterol. 2010:1876–83. https://doi.org/10.1038/ajg.2010.193.

    Article  PubMed  Google Scholar 

  23. Rebours V, Boutron-Ruault M-C, Schnee M, Férec C, Le Maréchal C, Hentic O, et al. The natural history of hereditary pancreatitis: a national series. Gut. 2009;58:97–103.

    Article  CAS  PubMed  Google Scholar 

  24. Applebaum-Shapiro SE, Finch R, Pfützer RH, Hepp LA, Gates L, Amann S, et al. Hereditary pancreatitis in North America: the Pittsburgh-Midwest Multi-Center Pancreatic Study Group Study. Pancreatology. 2001:439–43. https://doi.org/10.1159/000055844.

    Article  CAS  PubMed  Google Scholar 

  25. Keim V, Bauer N, Teich N, Simon P, Lerch MM, Mössner J. Clinical characterization of patients with hereditary pancreatitis and mutations in the cationic trypsinogen gene. Am J Med. 2001;111:622–6.

    Article  CAS  PubMed  Google Scholar 

  26. Masamune A, Kikuta K, Hamada S, Nakano E, Kume K, Inui A, et al. Nationwide survey of hereditary pancreatitis in Japan. J Gastroenterol. 2018;53:152–60.

    Article  CAS  PubMed  Google Scholar 

  27. Räty S, Piironen A, Babu M, Pelli H, Sand J, Uotila S, et al. Screening for human cationic trypsinogen (PRSS1) and trypsinogen inhibitor gene (SPINK1) mutations in a Finnish family with hereditary pancreatitis. Scand J Gastroenterol. 2007:1000–5. https://doi.org/10.1080/00365520701206738.

    Article  PubMed  CAS  Google Scholar 

  28. Pelaez-Luna M, Robles-Diaz G, Canizales-Quinteros S, Tusié-Luna MT. PRSS1 and SPINK1 mutations in idiopathic chronic and recurrent acute pancreatitis. World J Gastroenterol. 2014;20:11788–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dytz MG, de Melo JM, de Castro Santos O, da Silva Santos ID, Rodacki M, Conceição FL, et al. Hereditary pancreatitis associated with the N29T mutation of the PRSS1 gene in a Brazilian family. Medicine. 2015:e1508. https://doi.org/10.1097/md.0000000000001508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Masamune A, Research Committee of Intractable Pancreatic Diseases in Japan, Kikuta K, Nabeshima T, Nakano E, Hirota M. et al, Nationwide epidemiological survey of early chronic pancreatitis in Japan. Journal of Gastroenterology. 2017:992–1000. https://doi.org/10.1007/s00535-017-1311-8.

    Article  PubMed  Google Scholar 

  31. Németh BC, Sahin-Tóth M. Human cationic trypsinogen (PRSS1) variants and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2014;306:G466–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sahin-Tóth M, Tóth M. Gain-of-function mutations associated with hereditary pancreatitis enhance autoactivation of human cationic trypsinogen. Biochem Biophys Res Commun. 2000;278:286–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sahin-Tóth M. Human cationic trypsinogen. Role of Asn-21 in zymogen activation and implications in hereditary pancreatitis. J Biol Chem. 2000;275:22750–5.

    Article  PubMed  Google Scholar 

  34. Kukor Z, Tóth M, Pál G, Sahin-Tóth M. Human cationic trypsinogen. Arg(117) is the reactive site of an inhibitory surface loop that controls spontaneous zymogen activation. J Biol Chem. 2002;277:6111–7.

    Article  CAS  PubMed  Google Scholar 

  35. Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U, et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet. 2000;25:213–6.

    Article  CAS  PubMed  Google Scholar 

  36. Aoun E, Chang C-CH, Greer JB, Papachristou GI, Barmada MM, Whitcomb DC. Pathways to injury in chronic pancreatitis: decoding the role of the high-risk SPINK1 N34S haplotype using meta-analysis. PLoS One. 2008;3:e2003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Masamune A, Shimosegawa T. Genetics of pancreatitis. Alcoholic/Non-Alcoholic Digestive Diseases. 2019. 139–49. https://doi.org/10.1007/978-981-13-1465-0_12

    Chapter  Google Scholar 

  38. Szmola R, Sahin-Toth M. Chymotrypsin C (caldecrin) promotes degradation of human cationic trypsin: identity with Rinderknecht’s enzyme Y. Proc Natl Acad Sci. 2007:11227–32. https://doi.org/10.1073/pnas.0703714104.

    Article  CAS  Google Scholar 

  39. Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10(Suppl 2):S86–102.

    Article  CAS  PubMed  Google Scholar 

  40. Schneider A, Larusch J, Sun X, Aloe A, Lamb J, Hawes R, et al. Combined bicarbonate conductance-impairing variants in CFTR and SPINK1 variants are associated with chronic pancreatitis in patients without cystic fibrosis. Gastroenterology. 2011;140:162–71.

    Article  CAS  PubMed  Google Scholar 

  41. Witt H, Beer S, Rosendahl J, Chen J-M, Chandak GR, Masamune A, et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat Genet. 2013;45:1216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahurkar S, Idris MM, Reddy DN, Bhaskar S, Rao GV, Thomas V, et al. Association of cathepsin B gene polymorphisms with tropical calcific pancreatitis. Gut. 2006;55:1270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felderbauer P, Hoffmann P, Einwächter H, Bulut K, Ansorge N, Schmitz F, et al. A novel mutation of the calcium sensing receptor gene is associated with chronic pancreatitis in a family with heterozygous SPINK1 mutations. BMC Gastroenterology. 2003. https://doi.org/10.1186/1471-230x-3-34.

  44. Derikx MH, Kovacs P, Scholz M, Masson E, Chen J-M, Ruffert C, et al. Polymorphisms atPRSS1–PRSS2andCLDN2–MORC4loci associate with alcoholic and non-alcoholic chronic pancreatitis in a European replication study. Gut. 2015:1426–33. https://doi.org/10.1136/gutjnl-2014-307453.

    Article  PubMed  CAS  Google Scholar 

  45. Whitcomb DC, Frulloni L, Garg P, Greer JB, Schneider A, Yadav D, et al. Chronic pancreatitis: an international draft consensus proposal for a new mechanistic definition. Pancreatology. 2016;16:218–24.

    Article  PubMed  Google Scholar 

  46. Sankaran SJ, Xiao AY, Wu LM, Windsor JA, Forsmark CE, Petrov MS. Frequency of progression from acute to chronic pancreatitis and risk factors: a meta-analysis. Gastroenterology. 2015:1490–500.e1. https://doi.org/10.1053/j.gastro.2015.07.066.

    Article  PubMed  Google Scholar 

  47. DiMagno EP, Go VLW, Summerskill WHJ. Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N Engl J Med. 1973:813–5. https://doi.org/10.1056/nejm197304192881603.

    Article  CAS  PubMed  Google Scholar 

  48. de la Iglesia-Garcia D, Vallejo-Senra N, Iglesias-Garcia J, López-López A, Nieto L, Domínguez-Muñoz JE. Increased risk of mortality associated with pancreatic exocrine insufficiency in patients with chronic pancreatitis. J Clin Gastroenterol. 2018;52:e63–72.

    Article  PubMed  CAS  Google Scholar 

  49. Andersen BN, Nyboe Andersen B, Krarup T, Thorsgaard Pedersen N, Faber OK, Hagen C, et al. B cell function in patients with chronic pancreatitis and its relation to exocrine pancreatic function. Diabetologia. 1982:86–9. https://doi.org/10.1007/bf01271165.

    Article  Google Scholar 

  50. •• Rickels MR, Bellin M, Toledo FGS, Robertson RP, Andersen DK, Chari ST, et al. Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: recommendations from PancreasFest 2012. Pancreatology. 2013;13:336–42 One of the scarce documents that could be used as DEP management recommendations, resulted from specialists consensus with clinical and research expertise.

    Article  CAS  PubMed  Google Scholar 

  51. •• Makuc J. Management of pancreatogenic diabetes: challenges and solutions. Diabetes Metab Syndr Obes. 2016;9:311–5 A management review that ensures the importance of nutrition therapy, and the need of more studies for novel promising drugs, such the pancreatic polypeptide.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brunicardi FC. Pancreatic polypeptide administration improves abnormal glucose metabolism in patients with chronic pancreatitis. J Clin Endocrinol Metabol. 1996:3566–72. https://doi.org/10.1210/jc.81.10.3566.

    CAS  Google Scholar 

  53. Seymour NE, Volpert AR, Lee EL, Andersen DK, Hernandez C. Alterations in hepatocyte insulin binding in chronic pancreatitis: effects of pancreatic polypeptide. Am J Surg. 1995;169:105–9 discussion 110.

    Article  CAS  PubMed  Google Scholar 

  54. Niebisz-Cieślak AB, Karnafel W. Insulin sensitivity in chronic pancreatitis and features of insulin resistance syndrome. Pol Arch Med Wewn. 2010;120:255–63.

    PubMed  Google Scholar 

  55. Sossenheimer MJ, Aston CE, Preston RA, Gates LK Jr, Ulrich CD, Martin SP, et al. Clinical characteristics of hereditary pancreatitis in a large family, based on high-risk haplotype. The Midwest Multicenter Pancreatic Study Group (MMPSG). Am J Gastroenterol. 1997;92:1113–6.

    CAS  PubMed  Google Scholar 

  56. Gorry MC, Gabbaizedeh D, Furey W, Gates LK Jr, Preston RA, Aston CE, et al. Mutations in the cationic trypsinogen gene are associated with recurrent acute and chronic pancreatitis. Gastroenterology. 1997;113:1063–8.

    Article  CAS  PubMed  Google Scholar 

  57. Kleinman L, Benjamin K, Viswanathan H, Mattera MS, Bosserman LD, Blayney DW, et al. Development of the anemia impact measure (AIM): a disease-specific patient reported outcome (PRO) instrument to measure anemia symptoms and their impact on functioning in cancer patients receiving chemotherapy. Blood. 2008:668. https://doi.org/10.1182/blood.v112.11.668.668.

    Article  Google Scholar 

  58. Johnston PC, Thompson J, Mckee A, Hamill C, Wallace I. Diabetes and chronic pancreatitis: considerations in the holistic management of an often neglected disease. J Diabetes Res. 2019;2019:2487804.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parsaik AK, Murad MH, Sathananthan A, Moorthy V, Erwin PJ, Chari S, et al. Metabolic and target organ outcomes after total pancreatectomy: Mayo Clinic experience and meta-analysis of the literature. Clin Endocrinol. 2010:723–31. https://doi.org/10.1111/j.1365-2265.2010.03860.x.

    Article  PubMed  Google Scholar 

  60. Kleeff J, Whitcomb DC, Shimosegawa T, Esposito I, Lerch MM, Gress T, et al. Chronic pancreatitis. Nat Rev Dis Primers. 2017;3:17060.

    Article  PubMed  Google Scholar 

  61. Dytz MG, Marcelino PAH, de Castro Santos O, Zajdenverg L, Conceição FL, Ortiga-Carvalho TM, et al. Clinical aspects of pancreatogenic diabetes secondary to hereditary pancreatitis. Diabetol Metab Syndr. 2017;9:4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Shivaprasad C, Aiswarya Y, Kejal S, Sridevi A, Anupam B, Ramdas B, et al. Comparison of CGM-derived measures of glycemic variability between pancreatogenic diabetes and type 2 diabetes mellitus. J Diabetes Sci Technol. 2019;1932296819860133.

  63. Pancreatogenic (type 3c) diabetes. The Pancreapedia: Exocrine Pancreas Knowledge Base. https://doi.org/10.3998/panc.2015.35

  64. Sjoberg RJ, Kidd GS. Pancreatic diabetes mellitus. Diabetes Care. 1989:715–24. https://doi.org/10.2337/diacare.12.10.715.

    Article  CAS  PubMed  Google Scholar 

  65. Roeyen G, De Block C. A plea for more practical and clinically applicable criteria defining type 3c diabetes. Pancreatology. 2017;17:875.

    Article  PubMed  Google Scholar 

  66. Wang W, Guo Y, Liao Z, Zou D-W, Jin Z-D, Zou D-J, et al. Occurrence of and risk factors for diabetes mellitus in Chinese patients with chronic pancreatitis. Pancreas. 2011;40:206–12.

    Article  CAS  PubMed  Google Scholar 

  67. Andersen DK, Korc M, Petersen GM, Eibl G, Li D, Rickels MR, et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes. 2017;66:1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ramsey ML, Conwell DL, Hart PA. Complications of chronic pancreatitis. Dig Dis Sci. 2017;62:1745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Li D, Yeung S-CJ, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology. 2009;137:482–8.

    Article  PubMed  Google Scholar 

  70. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006:254–8. https://doi.org/10.2337/diacare.29.02.06.dc05-1558.

    Article  PubMed  Google Scholar 

  71. Cui Y, Andersen DK. Pancreatogenic diabetes: special considerations for management. Pancreatology. 2011;11:279–94.

    Article  PubMed  Google Scholar 

  72. Andersen DK. The practical importance of recognizing pancreatogenic or type 3c diabetes. Diabetes Metab Res Rev. 2012:326–8. https://doi.org/10.1002/dmrr.2285.

    Article  PubMed  Google Scholar 

  73. Tiengo A, de Kreutzenberg SV, Del Prato S. Diabetes in pancreatitis, pancreatectomy and other pancreatic diseases. Front Diabetes. 2014:119–43. https://doi.org/10.1159/000357252.

    Google Scholar 

  74. Rankin D, the UK NIHR DAFNE Study Group, Cooke DD, Elliott J, Heller SR, Lawton J. Supporting self-management after attending a structured education programme: a qualitative longitudinal investigation of type 1 diabetes patients’ experiences and views. BMC Public Health. 2012. https://doi.org/10.1186/1471-2458-12-652

  75. Reddy M, Rilstone S, Cooper P, Oliver NS. Type 1 diabetes in adults: supporting self management. BMJ. 2016:i998. https://doi.org/10.1136/bmj.i998.

  76. Šoupal J, Petruželková L, Flekač M, Pelcl T, Matoulek M, Daňková M, et al. Comparison of different treatment modalities for type 1 diabetes, including sensor-augmented insulin regimens, in 52 weeks of follow-up: a COMISAIR Study. Diabetes Technol Ther. 2016;18:532–538.

    Article  CAS  Google Scholar 

  77. Heinemann L, Freckmann G, Ehrmann D, Faber-Heinemann G, Guerra S, Waldenmaier D, et al. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial. Lancet. 2018;391:1367–77.

    Article  CAS  PubMed  Google Scholar 

  78. Suh S, Kim JH. Glycemic variability: how do we measure it and why is it important? Diabetes Metab J. 2015;39:273–82.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jeha GS, Karaviti LP, Anderson B, O’Brian Smith E, Donaldson S, McGirk TS, et al. Insulin pump therapy in preschool children with type 1 diabetes mellitus improves glycemic control and decreases glucose excursions and the risk of hypoglycemia. Diabetes Technol Ther. 2005:876–84. https://doi.org/10.1089/dia.2005.7.876.

    Article  CAS  Google Scholar 

  80. Group TDCACTR, The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the diabetes control and complications trial. Diabetes. 1997:271–86. https://doi.org/10.2337/diab.46.2.271.

  81. Wang Z, Lai S-T, Xie L, Zhao J-D, Ma N-Y, Zhu J, et al. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014;106:19–26.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou X, You S. Rosiglitazone inhibits hepatic insulin resistance induced by chronic pancreatitis and IKK-β/NF-κB expression in liver. Pancreas. 2014;43:1291–8.

    Article  CAS  PubMed  Google Scholar 

  83. Kung J, Henry RR. Thiazolidinedione safety. Expert Opin Drug Saf. 2012;11:565–79.

    Article  CAS  PubMed  Google Scholar 

  84. Forsmark CE. Incretins, diabetes, pancreatitis and pancreatic cancer: what the GI specialist needs to know. Pancreatology. 2016:10–3. https://doi.org/10.1016/j.pan.2015.11.009.

    Article  PubMed  Google Scholar 

  85. Lin YK, Johnston PC, Arce K, Hatipoglu BA. Chronic pancreatitis and diabetes mellitus. current treatment options in gastroenterology. 2015. p. 319–31. https://doi.org/10.1007/s11938-015-0055-x

    Article  PubMed  Google Scholar 

  86. Nikfarjam M, Wilson JS, Smith RC. Diagnosis and management of pancreatic exocrine insufficiency. Med J Aust. 2017:161–5. https://doi.org/10.5694/mja16.00851.

    Article  PubMed  Google Scholar 

  87. Duggan SN, Ewald N, Kelleher L, Griffin O, Gibney J, Conlon KC. The nutritional management of type 3c (pancreatogenic) diabetes in chronic pancreatitis. Eur J Clin Nutr. 2017;71:3–8.

    Article  CAS  PubMed  Google Scholar 

  88. Seymour NE, Brunicardi FC, Chaiken RL, Lebovitz HE, Chance RE, Gingerich RL, et al. Reversal of abnormal glucose production after pancreatic resection by pancreatic polypeptide administration in man. Surgery. 1988;104:119–29.

    CAS  PubMed  Google Scholar 

  89. Rabiee A, Galiatsatos P, Salas-Carrillo R, Thompson MJ, Andersen DK, Elahi D. Pancreatic polypeptide administration enhances insulin sensitivity and reduces the insulin requirement of patients on insulin pump therapy. J Diabetes Sci Technol. 2011;5:1521–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Hennig R, Kekis PB, Friess H, Adrian TE, Büchler MW. Pancreatic polypeptide in pancreatitis. Peptides. 2002. p. 331–8. https://doi.org/10.1016/s0196-9781(01)00605-2.

    Article  CAS  PubMed  Google Scholar 

  91. Aslam M, Vijayasarathy K, Talukdar R, Sasikala M, Nageshwar RD. Reduced pancreatic polypeptide response is associated with early alteration of glycemic control in chronic pancreatitis. Diabetes Res Clin Pract. 2019;107993.

  92. Bellin MD, Beilman GJ, Sutherland DE, Ali H, Petersen A, Mongin S, et al. How durable is total pancreatectomy and intraportal islet cell transplantation for treatment of chronic pancreatitis? J Am Coll Surg. 2019;228:329–39.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cui Y, Andersen DK. Diabetes and pancreatic cancer. Endocr Relat Cancer. 2012;19:F9–26.

    Article  CAS  PubMed  Google Scholar 

  94. Felderbauer P, Stricker I, Schnekenburger J, Bulut K, Chromik AM, Belyaev O, et al. Histopathological features of patients with chronic pancreatitis due to mutations in the PRSS1 gene: evaluation of BRAF and KRAS2 mutations. Digestion. 2008;78:60–5.

    Article  CAS  PubMed  Google Scholar 

  95. Syngal S, Brand RE, Church JM, Giardiello FM, Hampel HL, Burt RW. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am J Gastroenterol. 2015:223–62. https://doi.org/10.1038/ajg.2014.435.

    Article  PubMed  Google Scholar 

  96. Liang S, Yin H, Wei C, Xie L, He H, Liu X. Glucose variability for cardiovascular risk factors in type 2 diabetes: a meta-analysis. J Diabetes Metab Disord. 2017. https://doi.org/10.1186/s40200-017-0323-5.

Download references

Funding

No specific grant was received from any funding agency in the public, commercial, or not-for-profit sector for the publication of this report.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the manuscript and contributed to the design, drafting, and reviewing the paper.

Corresponding author

Correspondence to Marcio Garrison Dytz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, G.X., Dytz, M.G. Diabetes of the Exocrine Pancreas Related to Hereditary Pancreatitis, an Update. Curr Diab Rep 20, 16 (2020). https://doi.org/10.1007/s11892-020-01299-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-020-01299-8

Keywords

Navigation