Skip to main content
Log in

New Evidence of Exocrine Pancreatopathy in Pre-symptomatic and Symptomatic Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese and SJ Richardson, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Type 1 diabetes (T1D) is one of the most frequent chronic autoimmune diseases in humans, characterized by the lack of insulin production resulting in high blood glucose levels and lifelong requirement of exogenous insulin administration for survival. It is now recognized that the autoimmune process begins years before the clinical onset, in a stage called pre-symptomatic T1D, in which the presence of β-cell-specific autoantibodies is detectable. Our aim is to review evidence for T1D as a “whole-pancreas disease,” featured by both endocrine and exocrine pancreas alterations already at early disease stages.

Recent Findings

In this review, we discuss a series of recent observations indicating that in genetically predisposed individuals, structural and functional abnormalities as well as immune cell infiltration of the exocrine pancreas are already present in the pre-symptomatic stages of the disease.

Summary

Despite T1D being considered a β-cell-specific disease, numerous reports point to the presence of exocrine pancreas subclinical abnormalities occurring during disease development. These observations challenge the long-standing idea that T1D exocrine damage exists as a mere consequence of disease progression and provide further explanation of mechanisms underlying T1D pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pollard HM, Miller L, Brewer WA. The external secretion of the pancreas and diabetes mellitus. Am J Dig Dis. 1943;10:20–3.

    CAS  Google Scholar 

  2. Gepts W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes. 1965;14:619–33.

    CAS  PubMed  Google Scholar 

  3. Tan GD. The pancreas. Anaesth Intensive Care Med. 2008;9:424–7.

    Google Scholar 

  4. Mohapatra S, Majumder S, Smyrk TC, Zhang L, Matveyenko A, Kudva YC, et al. Diabetes mellitus is associated with an exocrine pancreatopathy: conclusions from a review of literature. Pancreas. 2016;45:1104–10.

    PubMed  PubMed Central  Google Scholar 

  5. Campbell-Thompson M, Rodriguez-Calvo T, Battaglia M. Abnormalities of the exocrine pancreas in type 1 diabetes. Curr Diab Rep. 2015;15:79.

    PubMed  PubMed Central  Google Scholar 

  6. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016;387:2340–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391:2449–62.

    PubMed  PubMed Central  Google Scholar 

  8. Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Raeder H, Johansson S, Holm PI, et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet. 2006;38:54–62.

    CAS  PubMed  Google Scholar 

  10. Panicot L, Mas E, Thivolet C, Lombardo D. Circulating antibodies against an exocrine pancreatic enzyme in type 1 diabetes. Diabetes. 1999;48:2316–23.

    CAS  PubMed  Google Scholar 

  11. Endo T, Takizawa S, Tanaka S, Takahashi M, Fujii H, Kamisawa T, et al. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes. 2009;58:732–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Taniguchi T, Okazaki K, Okamoto M, Seko S, Tanaka J, Uchida K, et al. High prevalence of autoantibodies against carbonic anhydrase II and lactoferrin in type 1 diabetes: concept of autoimmune exocrinopathy and endocrinopathy of the pancreas. Pancreas. 2003;27:26–30.

    CAS  PubMed  Google Scholar 

  13. Kobayashi T, Nakanishi K, Kajio H, Morinaga S, Sugimoto T, Murase T, et al. Pancreatic cytokeratin: an antigen of pancreatic exocrine cell autoantibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:363–70.

    CAS  PubMed  Google Scholar 

  14. Dooley J, Tian L, Schonefeldt S, Delghingaro-Augusto V, Garcia-Perez JE, Pasciuto E, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat Genet. 2016;48:519–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20:31–42.

    CAS  PubMed  Google Scholar 

  16. Hakonarson H, Grant SFA, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature. 2007;448:591–4.

    CAS  PubMed  Google Scholar 

  17. Williams AJK, Thrower SL, Sequeiros IM, Ward A, Bickerton AS, Triay JM, et al. Pancreatic volume is reduced in adult patients with recently diagnosed type 1 diabetes. J Clin Endocrinol Metab. 2012;97:E2109–13.

    CAS  PubMed  Google Scholar 

  18. Campbell-Thompson M, Wasserfall C, Montgomery EL Pancreas organ weight in individuals with disease-associated autoantibodies at risk for type 1 diabetes. jamanetwork.com

  19. Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26:456–61.

    CAS  PubMed  Google Scholar 

  20. Rahier J, Goebbels RM, Henquin JC. Cellular composition of the human diabetic pancreas. Diabetologia. 1983;24:366–71.

    CAS  PubMed  Google Scholar 

  21. Virostko J, Hilmes M, Eitel K, Moore DJ, Powers AC. Use of the electronic medical record to assess pancreas size in type 1 diabetes. PLoS One. 2016;11:e0158825.

    PubMed  PubMed Central  Google Scholar 

  22. •• Virostko J, Williams J, Hilmes M, Bowman C, Wright JJ, Du L, et al. Pancreas volume declines during the first year after diagnosis of type 1 diabetes and exhibits altered diffusion at disease onset. Diabetes Care. 2019;42:248–57. This is an important study describing not only a reduction in terms of pancreatic volume but also a change in pancreas composition in pre-symptomatic and symptomatic T1D with the use of modern technologies.

    CAS  PubMed  Google Scholar 

  23. •• Campbell-Thompson M, Atkinson MA, Filipp SL, Gurka MJ, Beegle R, Schatz D, Haller MJ, TYPE 1 DIABETES STUDY GROUP (2018) Relative pancreas volume is reduced in autoantibody negative first-degree relatives and subjects with pre–type 1 diabetes. Diabetes 67:1816–P. This is first demonstration of volume reduction in the very early phases of T1D development with the use of MRI.

    Google Scholar 

  24. Gaglia JL, Guimaraes AR, Harisinghani M, Turvey SE, Jackson R, Benoist C, et al. Noninvasive imaging of pancreatic islet inflammation in type 1A diabetes patients. J Clin Invest. 2011;121:442–5.

    CAS  PubMed  Google Scholar 

  25. Gilbeau JP, Poncelet V, Libon E, Derue G, Heller FR. The density, contour, and thickness of the pancreas in diabetics: CT findings in 57 patients. AJR Am J Roentgenol. 1992;159:527–31.

    CAS  PubMed  Google Scholar 

  26. Sequeiros IM, Hester K, Callaway M, Williams A, Garland Z, Powell T, et al. MRI appearance of the pancreas in patients with cystic fibrosis: a comparison of pancreas volume in diabetic and non-diabetic patients. Br J Radiol. 2010;83:921–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Henderson JR, Daniel PM, Fraser PA. The pancreas as a single organ: the influence of the endocrine upon the exocrine part of the gland. Gut. 1981;22:158–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonnet-Serrano F, Diedisheim M, Mallone R, Larger E. Decreased α-cell mass and early structural alterations of the exocrine pancreas in patients with type 1 diabetes: an analysis based on the nPOD repository. PLoS One. 2018;13:e0191528.

    PubMed  PubMed Central  Google Scholar 

  29. Whitcomb DC, Lowe ME. Human pancreatic digestive enzymes. Dig Dis Sci. 2007;52:1–17.

    CAS  PubMed  Google Scholar 

  30. Vacca JB, Henke WJ, Knight WA. The exocrine pancreas in diabetes mellitus. Ann Intern Med. 1964;61:242–7.

    CAS  PubMed  Google Scholar 

  31. Lankisch PG, Manthey G, Otto J, Koop H, Talaulicar M, Willms B, et al. Exocrine pancreatic function in insulin-dependent diabetes mellitus. Digestion. 1982;25:211–6.

    CAS  PubMed  Google Scholar 

  32. Domínguez-Muñoz JE, Hieronymus C, Sauerbruch T, Malfertheiner P. Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol. 1995;90:1834–7.

    PubMed  Google Scholar 

  33. Hardt PD, Krauss A, Bretz L, Porsch-Ozcürümez M, Schnell-Kretschmer H, Mäser E, et al. Pancreatic exocrine function in patients with type 1 and type 2 diabetes mellitus. Acta Diabetol. 2000;37:105–10.

    CAS  PubMed  Google Scholar 

  34. Hardt PD, Hauenschild A, Nalop J, Marzeion AM, Jaeger C, Teichmann J, et al. High prevalence of exocrine pancreatic insufficiency in diabetes mellitus. A multicenter study screening fecal elastase 1 concentrations in 1,021 diabetic patients. Pancreatology. 2003;3:395–402.

    PubMed  Google Scholar 

  35. Larger E, Philippe MF, Barbot-Trystram L, Radu A, Rotariu M, Nobécourt E, et al. Pancreatic exocrine function in patients with diabetes. Diabet Med. 2012;29:1047–54.

    CAS  PubMed  Google Scholar 

  36. Chen J-M, Radisky ES, Férec C (2013) Human trypsins. Handbook of proteolytic enzymes. Elsevier, pp 2600–2609.

  37. •• Li X, Campbell-Thompson M, Wasserfall CH, et al. Serum trypsinogen levels in type 1 diabetes. Diabetes Care. 2017;40:577–82. The first paper reporting a decreased level of pancreatic enzymes already in pre-symptomatic T1D.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Oh H-C, Kwon C-I, El Hajj II, Easler JJ, Watkins J, Fogel EL, et al. Low serum pancreatic amylase and lipase values are simple and useful predictors to diagnose chronic pancreatitis. Gut Liver. 2017;11:878–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Treacy J, Williams A, Bais R, Willson K, Worthley C, Reece J, et al. Evaluation of amylase and lipase in the diagnosis of acute pancreatitis. ANZ J Surg. 2001;71:577–82.

    CAS  PubMed  Google Scholar 

  40. Moossa AR. Current concepts. Diagnostic tests and procedures in acute pancreatitis. N Engl J Med. 1984;311:639–43.

    CAS  PubMed  Google Scholar 

  41. • Lundberg M, Lindqvist A, Wierup N, Krogvold L, Dahl-Jørgensen K, Skog O. The density of parasympathetic axons is reduced in the exocrine pancreas of individuals recently diagnosed with type 1 diabetes. PLoS One. 2017;12:e0179911. The first evidence that the density of parasympathetic axons innervating the exocrine pancreas is decreased in patients with recent T1D onset.

    PubMed  PubMed Central  Google Scholar 

  42. Stamatouli AM, Quandt Z, Perdigoto AL, Clark PL, Kluger H, Weiss SA, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes. 2018;67:1471–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Obata A, Kaneto H, Kamei S, Shimoda M, Kishi S, Isogawa A, et al. Pancreatic inflammation captured by imaging technology at the onset of fulminant type 1 diabetes: figure 1. Diabetes Care. 2015;38:e135–6.

    PubMed  Google Scholar 

  44. Rodriguez-Calvo T, Ekwall O, Amirian N, Zapardiel-Gonzalo J, von Herrath MG. Increased immune cell infiltration of the exocrine pancreas: a possible contribution to the pathogenesis of type 1 diabetes. Diabetes. 2014;63:3880–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vecchio F, Lo Buono N, Stabilini A, Nigi L, Dufort MJ, Geyer S, et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.122146.

  46. Valle A, Giamporcaro GM, Scavini M, Stabilini A, Grogan P, Bianconi E, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes. 2013;62:2072–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Merza M, Hartman H, Rahman M, Hwaiz R, Zhang E, Renström E, et al. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149:1920–1931.e8.

    CAS  PubMed  Google Scholar 

  48. Leppkes M, Maueröder C, Hirth S, Nowecki S, Günther C, Billmeier U, et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis. Nat Commun. 2016;7:10973.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Diana J, Simoni Y, Furio L, Beaudoin L, Agerberth B, Barrat F, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013;19:65–73.

    CAS  PubMed  Google Scholar 

  50. Harsunen MH, Puff R, D’Orlando O, Giannopoulou E, Lachmann L, Beyerlein A, et al. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm Metab Res. 2013;45:467–70.

    CAS  PubMed  Google Scholar 

  51. Qin J, Fu S, Speake C, Greenbaum CJ, Odegard JM. NETosis-associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count. Clin Exp Immunol. 2016;184:318–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;63:4239–48.

    CAS  PubMed  Google Scholar 

  53. Bollyky JB, Xu P, Butte AJ, Wilson DM, Beam CA, Greenbaum CJ, et al. Heterogeneity in recent-onset type 1 diabetes - a clinical trial perspective. Diabetes Metab Res Rev. 2015;31:588–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Newby BN, Mathews CE. Type I interferon is a catastrophic feature of the diabetic islet microenvironment. Front Endocrinol (Lausanne). 2017;8:232.

    Google Scholar 

  55. Huang X, Yuang J, Goddard A, Foulis A, James RF, Lernmark A, et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes. 1995;44:658–64.

    CAS  PubMed  Google Scholar 

  56. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Foulis AK, Farquharson MA, Meager A. Immunoreactive alpha-interferon in insulin-secreting beta cells in type 1 diabetes mellitus. Lancet. 1987;2:1423–7.

    CAS  PubMed  Google Scholar 

  58. •• Damond N, Engler S, Zanotelli VRT, et al. A map of human type 1 diabetes progression by imaging mass cytometry. Cell Metab. 2019;29:755–768.e5. This is a comprehensive mapping of immune cell localization in the pancreas from patients with T1D using a novel technology called imaging mass cytometry.

    CAS  PubMed  Google Scholar 

  59. In’t Veld P. Insulitis in human type 1 diabetes: the quest for an elusive lesion. Islets. 2011;3:131–8.

    PubMed  PubMed Central  Google Scholar 

  60. Ernst D, Witte T. Sjögren’s syndrome. Dtsch Med Wochenschr. 2016;141:544–50.

    PubMed  Google Scholar 

  61. Nordmark G, Eloranta M-L, Ronnblom L. Primary Sjögren’s syndrome and the type I interferon system. Curr Pharm Biotechnol. 2012;13:2054–62.

    CAS  PubMed  Google Scholar 

  62. Nezos A, Gravani F, Tassidou A, Kapsogeorgou EK, Voulgarelis M, Koutsilieris M, et al. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J Autoimmun. 2015;63:47–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Soza A, Everhart JE, Ghany MG, Doo E, Heller T, Promrat K, et al. Neutropenia during combination therapy of interferon alfa and ribavirin for chronic hepatitis C. Hepatology. 2002;36:1273–9.

    CAS  PubMed  Google Scholar 

  64. de Bruin AM, Libregts SF, Valkhof M, Boon L, Touw IP, Nolte MA. IFNγ induces monopoiesis and inhibits neutrophil development during inflammation. Blood. 2012;119:1543–54.

    PubMed  Google Scholar 

  65. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358:958–65.

    CAS  PubMed  Google Scholar 

  66. TEDDY Study Group. The environmental determinants of diabetes in the young (TEDDY) study. Ann N Y Acad Sci. 2008;1150:1–13.

    PubMed Central  Google Scholar 

  67. Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, et al. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia. 2017;60:2139–47.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Manuela Battaglia for her valuable and constructive suggestions during the development of this work.

Funding

Part of the work here described was generated thanks to the support of the Juvenile Diabetes Research Foundation (#3-SRA-2016-262-S-B) and Fondazione Cariplo (grant no. 2013-0941). Alessandra Petrelli is supported by the European Commission (grant no. H2020-MSCA-IF-2015 - 704779) and the Axa Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Petrelli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchio, F., Messina, G., Giovenzana, A. et al. New Evidence of Exocrine Pancreatopathy in Pre-symptomatic and Symptomatic Type 1 Diabetes. Curr Diab Rep 19, 92 (2019). https://doi.org/10.1007/s11892-019-1223-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1223-5

Keywords

Navigation