Skip to main content
Log in

Predictive Mathematical Models of Weight Loss

  • Obesity (KM Gadde, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Validated thermodynamic energy balance models that predict weight change are ever more in use today. Delivery of model predictions using web-based applets and/or smart phones has transformed these models into viable clinical tools. Here, we provide the general framework for thermodynamic energy balance model derivation and highlight differences between thermodynamic energy balance models using four representatives.

Recent Findings

Energy balance models have been used to successfully improve dietary adherence, estimate the magnitude of food waste, and predict dropout from clinical weight loss trials. They are also being used to generate hypotheses in nutrition experiments.

Summary

Applications of thermodynamic energy balance weight change prediction models range from clinical applications to modify behavior to deriving epidemiological conclusions. Novel future applications involve using these models to design experiments and provide support for treatment recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rickman AD, Williamson DA, Martin CK, Gilhooly CH, Stein RI, Bales CW, et al. The CALERIE study: design and methods of an innovative 25% caloric restriction intervention. Contemp Clin Trials. 2011;32(6):874–81. https://doi.org/10.1016/j.cct.2011.07.002.

    Article  Google Scholar 

  2. Rochon J, Bales CW, Ravussin E, Redman LM, Holloszy JO, Racette SB, et al. Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci. 2011;66(1):97–108. https://doi.org/10.1093/gerona/glq168.

    Article  Google Scholar 

  3. Allison DB, Thomas DM, Heymsfield SB. Energy intake and weight loss. JAMA. 2014;312(24):2687–8. https://doi.org/10.1001/jama.2014.15513.

    Article  PubMed  Google Scholar 

  4. Hall KD, Schoeller DA, Brown AW. Reducing calories to lose weight. JAMA. 2018;319(22):2336–7. https://doi.org/10.1001/jama.2018.4257.

    Article  PubMed  Google Scholar 

  5. Thomas DM, Gonzalez MC, Pereira AZ, Redman LM, Heymsfield SB. Time to correctly predict the amount of weight loss with dieting. J Acad Nutr Diet. 2014;114(6):857–61. https://doi.org/10.1016/j.jand.2014.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thomas DM, Bouchard C, Church T, Slentz C, Kraus WE, Redman LM, et al. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev. 2012;13(10):835–47. https://doi.org/10.1111/j.1467-789X.2012.01012.x.

    Article  CAS  Google Scholar 

  7. Thomas DM, Schoeller DA, Redman LA, Martin CK, Levine JA, Heymsfield SB. A computational model to determine energy intake during weight loss. Am J Clin Nutr. 2010;92(6):1326–31. https://doi.org/10.3945/ajcn.2010.29687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hall KD, Chow CC. Estimating changes in free-living energy intake and its confidence interval. Am J Clin Nutr. 2011;94(1):66–74. https://doi.org/10.3945/ajcn.111.014399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Antonetti VW. The equations governing weight change in human beings. Am J Clin Nutr. 1973;26(1):64–71. The Antonetti energy balance model was the first published equations governing human weight change dynamics from the first law of thermodynamics. The model predictions validated well against data from the Minnesota Starvation Experiment.

    Article  CAS  Google Scholar 

  10. Alpert SS. A two-reservoir energy model of the human body. Am J Clin Nutr. 1979;32(8):1710–8. https://doi.org/10.1093/ajcn/32.8.1710.

    Article  CAS  PubMed  Google Scholar 

  11. Christiansen E, Garby L, Sorensen TI. Quantitative analysis of the energy requirements for development of obesity. J Theor Biol. 2005;234(1):99–106. https://doi.org/10.1016/j.jtbi.2004.11.012.

    Article  PubMed  Google Scholar 

  12. •• Flatt JP. Carbohydrate-fat interactions and obesity examined by a two-compartment computer model. Obes Res. 2004;12(12):2013–22. https://doi.org/10.1038/oby.2004.252. The Flatt energy balance model represents a unique set of equations that focus on within-day and longer term body weight regulation in response to changes in carboyhdrate intake giving new insights between short-term and long-term body weight changes.

    Article  CAS  Google Scholar 

  13. Westerterp KR, Donkers JH, Fredrix EW, Boekhoudt P. Energy intake, physical activity and body weight: a simulation model. Br J Nutr. 1995;73(3):337–47.

    Article  CAS  Google Scholar 

  14. Kozusko FP. Body weight setpoint, metabolic adaption and human starvation. Bull Math Biol. 2001;63(2):393–403. https://doi.org/10.1006/bulm.2001.0229.

    Article  CAS  PubMed  Google Scholar 

  15. •• Hall KD. Predicting metabolic adaptation, body weight change, and energy intake in humans. Am J Physiol Endocrinol Metab. 2010;298(3):E449–66. https://doi.org/10.1152/ajpendo.00559.2009. The Hall energy balance model describes the response of human body weight and body composition to changes in carbohydrate, fat and protein intake. The model is the first to permit users to understand effects of individual macronutrients on body weight regulation.

    Article  CAS  Google Scholar 

  16. Wishnofsky M. Caloric equivalents of gained or lost weight. Am J Clin Nutr. 1958;6(5):542–6. https://doi.org/10.1093/ajcn/6.5.542.

    Article  CAS  PubMed  Google Scholar 

  17. Forbes GB. Weight loss during fasting: implications for the obese. Am J Clin Nutr. 1970;23(9):1212–9. https://doi.org/10.1093/ajcn/23.9.1212.

    Article  CAS  PubMed  Google Scholar 

  18. Byrne NM, Wood RE, Schutz Y, Hills AP. Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int J Obes. 2012;36(11):1472–8. https://doi.org/10.1038/ijo.2012.109.

    Article  CAS  Google Scholar 

  19. Song B, Thomas DM. Dynamics of starvation in humans. J Math Biol. 2007;54(1):27–43. https://doi.org/10.1007/s00285-006-0037-7.

    Article  PubMed  Google Scholar 

  20. Thomas DM, Martin CK, Heymsfield S, Redman LM, Schoeller DA, Levine JA. A simple model predicting individual weight change in humans. J Biol Dyn. 2011;5(6):579–99. https://doi.org/10.1080/17513758.2010.508541.

    Article  PubMed  PubMed Central  Google Scholar 

  21. University of Minnesota. Laboratory of Physiological Hygiene., Keys AB. The biology of human starvation. Minneapolis: University of Minnesota Press; 1950.

    Google Scholar 

  22. Schoeller D, Westerterp M. Advances in the assessment of dietary intake. CRC Press 2017.

  23. Livingston EH, Kohlstadt I. Simplified resting metabolic rate-predicting formulas for normal-sized and obese individuals. Obes Res. 2005;13(7):1255–62. https://doi.org/10.1038/oby.2005.149.

    Article  PubMed  Google Scholar 

  24. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283(5399):212–4.

    Article  CAS  Google Scholar 

  25. Martin CK, Miller AC, Thomas DM, Champagne CM, Han H, Church T. Efficacy of SmartLoss, a smartphone-based weight loss intervention: results from a randomized controlled trial. Obesity (Silver Spring). 2015;23(5):935–42. https://doi.org/10.1002/oby.21063.

    Article  Google Scholar 

  26. Hall KD. Computational model of in vivo human energy metabolism during semistarvation and refeeding. Am J Physiol Endocrinol Metab. 2006;291(1):E23–37. https://doi.org/10.1152/ajpendo.00523.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hall KD, Bemis T, Brychta R, Chen KY, Courville A, Crayner EJ, et al. Calorie for calorie, dietary fat restriction results in more body fat loss than carbohydrate restriction in people with obesity. Cell Metab. 2015;22(3):427–36. https://doi.org/10.1016/j.cmet.2015.07.021.

    Article  CAS  Google Scholar 

  28. Martin CK, Gilmore LA, Apolzan JW, Myers CA, Thomas DM, Redman LM. Smartloss: a personalized mobile health intervention for weight management and health promotion. JMIR Mhealth Uhealth. 2016;4(1):e18. https://doi.org/10.2196/mhealth.5027.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thomas DM. Modeling in clinical nutrition: does it add to patient care? Eur J Clin Nutr. 2013;67(5):555–7. https://doi.org/10.1038/ejcn.2013.16.

    Article  CAS  PubMed  Google Scholar 

  30. Body Key by Nutrilite. Amway. https://www.amway.com/nutrition/nutrilite/bodykey. Accessed April 18, 2019 2019.

  31. Hall KD, Guo J, Dore M, Chow CC. The progressive increase of food waste in America and its environmental impact. PLoS One. 2009;4(11):e7940. https://doi.org/10.1371/journal.pone.0007940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Melanson EL, Keadle SK, Donnelly JE, Braun B, King NA. Resistance to exercise-induced weight loss: compensatory behavioral adaptations. Med Sci Sports Exerc. 2013;45(8):1600–9. https://doi.org/10.1249/MSS.0b013e31828ba942.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Doucet E, McInis K, Mahmoodianfard S. Compensation in response to energy deficits induced by exercise or diet. Obes Rev. 2018;19(Suppl 1):36–46. https://doi.org/10.1111/obr.12783.

    Article  PubMed  Google Scholar 

  34. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297(19):2081–91. https://doi.org/10.1001/jama.297.19.2081.

    Article  CAS  PubMed  Google Scholar 

  35. Westerterp KR, Meijer GA, Janssen EM, Saris WH, Ten Hoor F. Long-term effect of physical activity on energy balance and body composition. Br J Nutr. 1992;68(1):21–30.

    Article  CAS  Google Scholar 

  36. Batterham M, Tapsell L, Charlton K, O'Shea J, Thorne R. Using data mining to predict success in a weight loss trial. J Hum Nutr Diet. 2017;30(4):471–8. https://doi.org/10.1111/jhn.12448.

    Article  CAS  PubMed  Google Scholar 

  37. Williamson DA, Anton SD, Han H, Champagne CM, Allen R, LeBlanc E, et al. Adherence is a multi-dimensional construct in the POUNDS LOST trial. J Behav Med. 2010;33(1):35–46. https://doi.org/10.1007/s10865-009-9230-7.

    Article  Google Scholar 

  38. Thomas DM, Ivanescu AE, Martin CK, Heymsfield SB, Marshall K, Bodrato VE, et al. Predicting successful long-term weight loss from short-term weight-loss outcomes: new insights from a dynamic energy balance model (the POUNDS Lost study). Am J Clin Nutr. 2015;101(3):449–54. https://doi.org/10.3945/ajcn.114.091520.

    Article  Google Scholar 

  39. Christiansen E, Garby L. Prediction of body weight changes caused by changes in energy balance. Eur J Clin Investig. 2002;32(11):826–30.

    Article  CAS  Google Scholar 

  40. Speakman JR, Westerterp KR. A mathematical model of weight loss under total starvation: evidence against the thrifty-gene hypothesis. Dis Model Mech. 2013;6(1):236–51. https://doi.org/10.1242/dmm.010009.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas DM, Navarro-Barrientos JE, Rivera DE, Heymsfield SB, Bredlau C, Redman LM, et al. Dynamic energy-balance model predicting gestational weight gain. Am J Clin Nutr. 2012;95(1):115–22. https://doi.org/10.3945/ajcn.111.024307.

    Article  Google Scholar 

  42. Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378(9793):826–37. https://doi.org/10.1016/S0140-6736(11)60812-X.

    Article  Google Scholar 

  43. Chow CC, Hall KD. The dynamics of human body weight change. PLoS Comput Biol. 2008;4(3):e1000045. https://doi.org/10.1371/journal.pcbi.1000045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana M. Thomas.

Ethics declarations

Conflict of Interest

Diana M. Thomas is the co-inventor of SmartLoss used in BodyKey. She does not receive any financial compensation for this invention.

Michael Scioletti and Steven B. Heymsfield declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D.M., Scioletti, M. & Heymsfield, S.B. Predictive Mathematical Models of Weight Loss. Curr Diab Rep 19, 93 (2019). https://doi.org/10.1007/s11892-019-1207-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1207-5

Keywords

Navigation