Skip to main content
Log in

Regulation of Glucose Production in the Pathogenesis of Type 2 Diabetes

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Increased glucose production associated with hepatic insulin resistance contributes to the development of hyperglycemia in T2D. The molecular mechanisms accounting for increased glucose production remain controversial. Our aims were to review recent literature concerning molecular mechanisms regulating glucose production and to discuss these mechanisms in the context of physiological experiments and observations in humans and large animal models.

Recent Findings

Genetic intervention studies in rodents demonstrate that insulin can control hepatic glucose production through both direct effects on the liver, and through indirect effects to inhibit adipose tissue lipolysis and limit gluconeogenic substrate delivery. However, recent experiments in canine models indicate that the direct effects of insulin on the liver are dominant over the indirect effects to regulate glucose production. Recent molecular studies have also identified insulin-independent mechanisms by which hepatocytes sense intrahepatic carbohydrate levels to regulate carbohydrate disposal.

Summary

Dysregulation of hepatic carbohydrate sensing systems may participate in increased glucose production in the development of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cahill GF Jr. Starvation in man. N Engl J Med. 1970;282(12):668–75. https://doi.org/10.1056/NEJM197003192821209.

    Article  CAS  PubMed  Google Scholar 

  2. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998;352(9131):837–53.

  3. Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care. 1979;2(2):120–6.

    Article  CAS  PubMed  Google Scholar 

  4. Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, Brunengraber H, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes. 1999;48(2):292–8.

    Article  CAS  PubMed  Google Scholar 

  5. Pagliassotti MJ, Cherrington AD. Regulation of net hepatic glucose uptake in vivo. Annu Rev Physiol. 1992;54(1):847–60. https://doi.org/10.1146/annurev.ph.54.030192.004215.

    Article  CAS  PubMed  Google Scholar 

  6. Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, Cobelli C, et al. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996;97(1):126–32. https://doi.org/10.1172/JCI118379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petersen KF, Price T, Cline GW, Rothman DL, Shulman GI. Contribution of net hepatic glycogenolysis to glucose production during the early postprandial period. Am J Phys. 1996;270(1 Pt 1):E186–91. https://doi.org/10.1152/ajpendo.1996.270.1.E186.

    Article  CAS  Google Scholar 

  8. Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest. 1996;98(2):378–85. https://doi.org/10.1172/JCI118803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rothman DL, Magnusson I, Katz LD, Shulman RG, Shulman GI. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science. 1991;254(5031):573–6.

    Article  CAS  PubMed  Google Scholar 

  10. Nuttall FQ, Ngo A, Gannon MC. Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev. 2008;24(6):438–58. https://doi.org/10.1002/dmrr.863.

    Article  CAS  PubMed  Google Scholar 

  11. Jahoor F, Peters EJ, Wolfe RR. The relationship between gluconeogenic substrate supply and glucose production in humans. Am J Phys. 1990;258(2 Pt 1):E288–96. https://doi.org/10.1152/ajpendo.1990.258.2.E288.

    Article  CAS  Google Scholar 

  12. Baba H, Zhang XJ, Wolfe RR. Glycerol gluconeogenesis in fasting humans. Nutrition. 1995;11(2):149–53.

    CAS  PubMed  Google Scholar 

  13. Chen X, Iqbal N, Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest. 1999;103(3):365–72. https://doi.org/10.1172/JCI5479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McGarry JD. What if Minkowski had been ageusic? An alternative angle on diabetes. Science. 1992;258(5083):766–70.

    Article  CAS  PubMed  Google Scholar 

  15. Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev. 1995;16(2):117–42. https://doi.org/10.1210/edrv-16-2-117.

    Article  CAS  PubMed  Google Scholar 

  16. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest. 2016;126(1):12–22. https://doi.org/10.1172/JCI77812.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6(1):87–97. https://doi.org/10.1016/S1097-2765(05)00015-8.

    Article  CAS  PubMed  Google Scholar 

  18. Haas JT, Miao J, Chanda D, Wang Y, Zhao E, Haas ME, et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 2012;15(6):873–84. https://doi.org/10.1016/j.cmet.2012.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology. 2014;146(3):726–35. https://doi.org/10.1053/j.gastro.2013.11.049.

    Article  CAS  PubMed  Google Scholar 

  20. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51. https://doi.org/10.1172/JCI23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss R, Dufour S, Taksali SE, Tamborlane WV, Petersen KF, Bonadonna RC, et al. Prediabetes in obese youth: a syndrome of impaired glucose tolerance, severe insulin resistance, and altered myocellular and abdominal fat partitioning. Lancet. 2003;362(9388):951–7. https://doi.org/10.1016/S0140-6736(03)14364-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Campbell PJ, Mandarino LJ, Gerich JE. Quantification of the relative impairment in actions of insulin on hepatic glucose production and peripheral glucose uptake in non-insulin-dependent diabetes mellitus. Metabolism. 1988;37(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  23. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 1989;38(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  24. Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab. 2008;7(2):95–6. https://doi.org/10.1016/j.cmet.2007.12.009.

    Article  CAS  PubMed  Google Scholar 

  25. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Phys. 1979;237(3):E214–23. https://doi.org/10.1152/ajpendo.1979.237.3.E214.

    Article  CAS  Google Scholar 

  26. Gerich JE. Metabolic abnormalities in impaired glucose tolerance. Metabolism. 1997;46(12 Suppl 1):40–3.

    Article  CAS  PubMed  Google Scholar 

  27. Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Intern Med. 2003;163(11):1306–16. https://doi.org/10.1001/archinte.163.11.1306.

    Article  CAS  PubMed  Google Scholar 

  28. White PJ, McGarrah RW, Grimsrud PA, Tso SC, Yang WH, Haldeman JM, et al. The BCKDH kinase and phosphatase integrate BCAA and lipid metabolism via regulation of ATP-citrate lyase. Cell Metab. 2018;27(6):1281–93 e7. https://doi.org/10.1016/j.cmet.2018.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen C, Williams PF, Cooney GJ, Caterson ID, Turtle JR. The effects of fasting and refeeding on liver glycogen synthase and phosphorylase in obese and lean mice. Horm Metab Res. 1992;24(4):161–6. https://doi.org/10.1055/s-2007-1003285.

    Article  PubMed  Google Scholar 

  30. • Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, et al. Insulin's direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI Insight. 2017;2(6):e91863. https://doi.org/10.1172/jci.insight.91863. This study shows in a canine model that insulin’s acute effects to suppress glucose production is primarily mediated by its direct effects on the liver independently of insulin action on the CNS, adipose tissue, or other peripheral tissue.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96. https://doi.org/10.1038/nrm1837.

    Article  CAS  PubMed  Google Scholar 

  32. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997;7(4):261–9.

    Article  CAS  PubMed  Google Scholar 

  33. Nakae J, Kitamura T, Silver DL, Accili D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001;108(9):1359–67. https://doi.org/10.1172/JCI12876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Altomonte J, Richter A, Harbaran S, Suriawinata J, Nakae J, Thung SN, et al. Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Physiol Endocrinol Metab. 2003;285(4):E718–28. https://doi.org/10.1152/ajpendo.00156.2003.

    Article  CAS  PubMed  Google Scholar 

  35. Matsumoto M, Pocai A, Rossetti L, Depinho RA, Accili D. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007;6(3):208–16. https://doi.org/10.1016/j.cmet.2007.08.006.

    Article  CAS  PubMed  Google Scholar 

  36. Haeusler RA, Kaestner KH, Accili D. FoxOs function synergistically to promote glucose production. J Biol Chem. 2010;285(46):35245–8. https://doi.org/10.1074/jbc.C110.175851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A. 2003;100(20):11285–90. https://doi.org/10.1073/pnas.1934283100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857–68. https://doi.org/10.1016/S0092-8674(00)80595-4.

    Article  CAS  PubMed  Google Scholar 

  39. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292(5522):1728–31. https://doi.org/10.1126/science.292.5522.1728.

    Article  CAS  PubMed  Google Scholar 

  40. • Titchenell PM, Chu QW, Monks BR, Birnbaum MJ. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat Commun. 2015;6:7078. https://doi.org/10.1038/ncomms8078 7078. This study shows that when both the insulin receptor and FOXO1 are knocked out of mouse liver, insulin is able to suppress hepatic glucose production by acting on extrahepatic tissues. This indicates that extrahepatic, insulin-mediated mechanisms exist for regulation of glucose production.

    Article  CAS  PubMed  Google Scholar 

  41. Lu M, Wan M, Leavens KF, Chu Q, Monks BR, Fernandez S, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18(3):388–95. https://doi.org/10.1038/nm.2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okamoto H, Obici S, Accili D, Rossetti L. Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. J Clin Invest. 2005;115(5):1314–22. https://doi.org/10.1172/JCI23096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Boden G, Chen X, Capulong E, Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes. 2001;50(4):810–6.

    Article  CAS  PubMed  Google Scholar 

  44. Sindelar DK, Chu CA, Rohlie M, Neal DW, Swift LL, Cherrington AD. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes. 1997;46(2):187–96.

    Article  CAS  PubMed  Google Scholar 

  45. Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98(3):741–9. https://doi.org/10.1172/JCI118846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. • Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745–58. https://doi.org/10.1016/j.cell.2015.01.012. This study shows that one of insulin’s extrahepatic modes of action to decrease hepatic glucose production is mediated by its inhibitory effect on lipolysis in adipocytes. Additionally, it indicates that high fat diet induced hyperglycemia may result from increased hepatic acetyl-CoA levels produced from oxidation of adipose derived fatty acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434(7036):1026–31. https://doi.org/10.1038/nature03439.

    Article  CAS  PubMed  Google Scholar 

  48. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 2007;5(6):438–49. https://doi.org/10.1016/j.cmet.2007.05.004.

    Article  CAS  PubMed  Google Scholar 

  49. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8(12):1376–82. https://doi.org/10.1038/nm798.

    Article  CAS  PubMed  Google Scholar 

  50. Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab. 2006;3(4):267–75. https://doi.org/10.1016/j.cmet.2006.02.009.

    Article  CAS  PubMed  Google Scholar 

  51. Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10(2):168–74. https://doi.org/10.1038/nm980.

    Article  CAS  PubMed  Google Scholar 

  52. Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51(12):3391–9. https://doi.org/10.2337/diabetes.51.12.3391.

    Article  CAS  PubMed  Google Scholar 

  53. Ramnanan CJ, Edgerton DS, Cherrington AD. Evidence against a physiologic role for acute changes in CNS insulin action in the rapid regulation of hepatic glucose production. Cell Metab. 2012;15(5):656–64. https://doi.org/10.1016/j.cmet.2012.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, et al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116(2):521–7. https://doi.org/10.1172/JCI27073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chandramouli V, Ekberg K, Schumann WC, Kalhan SC, Wahren J, Landau BR. Quantifying gluconeogenesis during fasting. Am J Phys. 1997;273(6 Pt 1):E1209–15. https://doi.org/10.1152/ajpendo.1997.273.6.E1209.

    Article  CAS  Google Scholar 

  56. Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI. Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest. 1992;90(4):1323–7. https://doi.org/10.1172/JCI115997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gastaldelli A, Baldi S, Pettiti M, Toschi E, Camastra S, Natali A, et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes. 2000;49(8):1367–73.

    Article  CAS  PubMed  Google Scholar 

  58. Edgerton DS, Ramnanan CJ, Grueter CA, Johnson KM, Lautz M, Neal DW, et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes. 2009;58(12):2766–75. https://doi.org/10.2337/db09-0328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Agius L. Role of glycogen phosphorylase in liver glycogen metabolism. Mol Asp Med. 2015;46:34–45. https://doi.org/10.1016/j.mam.2015.09.002.

    Article  CAS  Google Scholar 

  60. Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441(3):763–87. https://doi.org/10.1042/BJ20111416.

    Article  CAS  PubMed  Google Scholar 

  61. Wan M, Leavens KF, Hunter RW, Koren S, von Wilamowitz-Moellendorff A, Lu M, et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab. 2013;18(1):99–105. https://doi.org/10.1016/j.cmet.2013.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Doherty MJ, Cadefau J, Stalmans W, Bollen M, Cohen PT. Loss of the hepatic glycogen-binding subunit (GL) of protein phosphatase 1 underlies deficient glycogen synthesis in insulin-dependent diabetic rats and in adrenalectomized starved rats. Biochem J. 1998;333(Pt 2)(2)):253–7. https://doi.org/10.1042/bj3330253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohen PTW. Protein phosphatase 1 – targeted in many directions. J Cell Sci. 2002;115(2):241–56.

    CAS  PubMed  Google Scholar 

  64. Doherty MJ, Moorhead G, Morrice N, Cohen P, Cohen PT. Amino acid sequence and expression of the hepatic glycogen-binding (GL)-subunit of protein phosphatase-1. FEBS Lett. 1995;375(3):294–8.

    Article  CAS  PubMed  Google Scholar 

  65. Hansen L, Hansen T, Vestergaard H, Bjorbaek C, Echwald SM, Clausen JO, et al. A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin. Hum Mol Genet. 1995;4(8):1313–20. https://doi.org/10.1093/hmg/4.8.1313.

    Article  CAS  PubMed  Google Scholar 

  66. O'Doherty RM, Jensen PB, Anderson P, Jones JG, Berman HK, Kearney D, et al. Activation of direct and indirect pathways of glycogen synthesis by hepatic overexpression of protein targeting to glycogen. J Clin Invest. 2000;105(4):479–88. https://doi.org/10.1172/JCI8673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117(3):739–45. https://doi.org/10.1172/JCI30400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raddatz K, Turner N, Frangioudakis G, Liao BM, Pedersen DJ, Cantley J, et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia. 2011;54(6):1447–56. https://doi.org/10.1007/s00125-011-2073-0.

    Article  CAS  PubMed  Google Scholar 

  69. Brandon AE, Liao BM, Diakanastasis B, Parker BL, Raddatz K, McManus SA, et al. Protein kinase C epsilon deletion in adipose tissue, but not in liver, improves glucose tolerance. Cell Metab. 2019;29(1):183–91 e7. https://doi.org/10.1016/j.cmet.2018.09.013.

    Article  CAS  PubMed  Google Scholar 

  70. Farese RV Jr, Zechner R, Newgard CB, Walther TC. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab. 2012;15(5):570–3. https://doi.org/10.1016/j.cmet.2012.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Herrera MG, Kamm D, Ruderman N, Cahill. Non-hormonal factors in the control of gluconeogenesis. Adv Enzym Regul. 1966;4:225–35.

    Article  CAS  Google Scholar 

  72. Diamond MP, Rollings RC, Steiner KE, Williams PE, Lacy WW, Cherrington AD. Effect of alanine concentration independent of changes in insulin and glucagon on alanine and glucose homeostasis in the conscious dog. Metabolism. 1988;37(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  73. Wolfe RR, Jahoor F, Shaw JH. Effect of alanine infusion on glucose and urea production in man. JPEN J Parenter Enteral Nutr. 1987;11(2):109–11. https://doi.org/10.1177/0148607187011002109.

    Article  CAS  PubMed  Google Scholar 

  74. Steele R, Winkler B, Altszuler N. Inhibition by infused glycerol of gluconeogenesis from other precursors. Am J Phys. 1971;221(3):883–8. https://doi.org/10.1152/ajplegacy.1971.221.3.883.

    Article  CAS  Google Scholar 

  75. Shulman GI, Lacy WW, Liljenquist JE, Keller U, Williams PE, Cherrington AD. Effect of glucose, independent of changes in insulin and glucagon secretion, on alanine metabolism in the conscious dog. J Clin Invest. 1980;65(2):496–505. https://doi.org/10.1172/JCI109693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jenssen T, Nurjhan N, Consoli A, Gerich JE. Failure of substrate-induced gluconeogenesis to increase overall glucose appearance in normal humans. Demonstration of hepatic autoregulation without a change in plasma glucose concentration. J Clin Invest. 1990;86(2):489–97. https://doi.org/10.1172/JCI114735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shulman GI, Liljenquist JE, Williams PE, Lacy WW, Cherrington AD. Glucose disposal during insulinopenia in somatostatin-treated dogs. The roles of glucose and glucagon. J Clin Invest. 1978;62(2):487–91. https://doi.org/10.1172/JCI109150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sacca L, Hendler R, Sherwin RS. Hyperglycemia inhibits glucose production in man independent of changes in glucoregulatory hormones. J Clin Endocrinol Metab. 1978;47(5):1160–3. https://doi.org/10.1210/jcem-47-5-1160.

    Article  CAS  PubMed  Google Scholar 

  79. Davidson MB. Autoregulation by glucose of hepatic glucose balance: permissive effect of insulin. Metabolism. 1981;30(3):279–84. https://doi.org/10.1016/0026-0495(81)90152-9.

    Article  CAS  PubMed  Google Scholar 

  80. Wahren J, Felig P, Cerasi E, Luft R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest. 1972;51(7):1870–8. https://doi.org/10.1172/JCI106989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Toft I, Jenssen T. Type 2 diabetic patients have increased gluconeogenic efficiency to substrate availability, but intact autoregulation of endogenous glucose production. Scand J Clin Lab Invest. 2005;65(4):307–20. https://doi.org/10.1080/00365510510025692.

    Article  CAS  PubMed  Google Scholar 

  82. • Kim MS, Krawczyk SA, Doridot L, Fowler AJ, Wang JX, Trauger SA, et al. ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest. 2016;126(11):4372–86. https://doi.org/10.1172/JCI81993. This study shows that ChREBP-mediated activation of G6PC expression and activity is dominant over insulin’s ability to suppress it. It provides evidence that carbohydrate mediated activation of ChREBP can contribute to hepatic insulin resistance.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Agius L. Dietary carbohydrate and control of hepatic gene expression: mechanistic links from ATP and phosphate ester homeostasis to the carbohydrate-response element-binding protein. Proc Nutr Soc. 2016;75(1):10–8. https://doi.org/10.1017/S0029665115002451.

    Article  CAS  PubMed  Google Scholar 

  84. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A. 2004;101(19):7281–6. https://doi.org/10.1073/pnas.0401516101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Agius L. High-carbohydrate diets induce hepatic insulin resistance to protect the liver from substrate overload. Biochem Pharmacol. 2013;85(3):306–12. https://doi.org/10.1016/j.bcp.2012.09.019.

    Article  CAS  PubMed  Google Scholar 

  86. • von Wilamowitz-Moellendorff A, Hunter RW, Garcia-Rocha M, Kang L, Lopez-Soldado I, Lantier L, et al. Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes. 2013;62(12):4070–82. https://doi.org/10.2337/db13-0880. This study provides evidence that G6P mediated activation of glycogen synthase is more important than insulin-mediated regulation of glycogen synthase activity in the regulation of glycogen synthesis.

    Article  CAS  Google Scholar 

  87. Aiston S, Andersen B, Agius L. Glucose 6-phosphate regulates hepatic glycogenolysis through inactivation of phosphorylase. Diabetes. 2003;52(6):1333–9. https://doi.org/10.2337/diabetes.52.6.1333.

    Article  CAS  PubMed  Google Scholar 

  88. Li MV, Chen W, Harmancey RN, Nuotio-Antar AM, Imamura M, Saha P, et al. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res Commun. 2010;395(3):395–400. https://doi.org/10.1016/j.bbrc.2010.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 2017;26(2):324–41. https://doi.org/10.1016/j.cmet.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  90. Kim M, Astapova II, Flier SN, Hannou SA, Doridot L, Sargsyan A, et al. Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight. 2017;2(24). https://doi.org/10.1172/jci.insight.96703.

  91. Petersen KF, Laurent D, Yu C, Cline GW, Shulman GI. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes. 2001;50(6):1263–8.

    Article  CAS  PubMed  Google Scholar 

  92. Shiota M, Galassetti P, Monohan M, Neal DW, Cherrington AD. Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes. 1998;47(6):867–73.

    Article  CAS  PubMed  Google Scholar 

  93. Shiota M, Moore MC, Galassetti P, Monohan M, Neal DW, Shulman GI, et al. Inclusion of low amounts of fructose with an intraduodenal glucose load markedly reduces postprandial hyperglycemia and hyperinsulinemia in the conscious dog. Diabetes. 2002;51(2):469–78.

    Article  CAS  PubMed  Google Scholar 

  94. • Schwarz JM, Noworolski SM, Wen MJ, Dyachenko A, Prior JL, Weinberg ME, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab. 2015;100(6):2434–42. https://doi.org/10.1210/jc.2014-3678. This study shows that short-term high fructose feeding increases glycogenolysis and glucose production in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Eissing L, Scherer T, Tödter K, Knippschild U, Greve JW, Buurman WA, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nat Commun. 2013;4:1528. https://doi.org/10.1038/ncomms2537.

    Article  CAS  PubMed  Google Scholar 

  96. Kursawe R, Caprio S, Giannini C, Narayan D, Lin A, D'Adamo E, et al. Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes. 2013;62(3):837–44. https://doi.org/10.2337/db12-0889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes. 2006;55(8):2159–70. https://doi.org/10.2337/db06-0200.

    Article  CAS  PubMed  Google Scholar 

  98. Clore JN, Helm ST, Blackard WG. Loss of hepatic autoregulation after carbohydrate overfeeding in normal man. J Clin Invest. 1995;96(4):1967–72. https://doi.org/10.1172/JCI118243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Arias AMP, Sauerwein HP, Bisschop PH, Endert E, Ackermans MT, Meijer AJ, et al. The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men*. J Clin Endocrinol Metab. 2000;85(5):1963–7. https://doi.org/10.1210/jcem.85.5.6573.

    Article  Google Scholar 

  100. Samuel VT, Beddow SA, Iwasaki T, Zhang XM, Chu X, Still CD, et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type 2 diabetes. Proc Natl Acad Sci U S A. 2009;106(29):12121–6. https://doi.org/10.1073/pnas.0812547106.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Haeusler RA, Camastra S, Astiarraga B, Nannipieri M, Anselmino M, Ferrannini E. Decreased expression of hepatic glucokinase in type 2 diabetes. Mol Metab. 2015;4(3):222–6. https://doi.org/10.1016/j.molmet.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  102. • Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L, Hutzler A, et al. Bursty gene expression in the intact mammalian liver. Mol Cell. 2015;58(1):147–56. https://doi.org/10.1016/j.molcel.2015.01.027. This study shows that there is wide variation in the rate of hepatic mRNA turnover and G6PC mRNA turnover is the fastest of all mRNA species robustly detected in the liver. This study underlines the importance of considering metabolic state when harvesting tissues to try to infer molecular mechanisms mediating increased glucose production.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH R01DK100425 (M.A.H.) and American Diabetes Association 1-19-PDF-088 (A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Herman.

Ethics declarations

Conflict of Interest

Ashot Sargsyan declares that he has no conflict of interest.

Mark A. Herman reports personal fees from Alkermes Pharmaceuticals and grants from Eli Lilly and Co.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A., Herman, M.A. Regulation of Glucose Production in the Pathogenesis of Type 2 Diabetes. Curr Diab Rep 19, 77 (2019). https://doi.org/10.1007/s11892-019-1195-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1195-5

Keywords

Navigation